summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dgehrd.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/dgehrd.f')
-rw-r--r--2.3-1/src/fortran/lapack/dgehrd.f273
1 files changed, 273 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dgehrd.f b/2.3-1/src/fortran/lapack/dgehrd.f
new file mode 100644
index 00000000..339ee400
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dgehrd.f
@@ -0,0 +1,273 @@
+ SUBROUTINE DGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER IHI, ILO, INFO, LDA, LWORK, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DGEHRD reduces a real general matrix A to upper Hessenberg form H by
+* an orthogonal similarity transformation: Q' * A * Q = H .
+*
+* Arguments
+* =========
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* ILO (input) INTEGER
+* IHI (input) INTEGER
+* It is assumed that A is already upper triangular in rows
+* and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
+* set by a previous call to DGEBAL; otherwise they should be
+* set to 1 and N respectively. See Further Details.
+* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
+*
+* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+* On entry, the N-by-N general matrix to be reduced.
+* On exit, the upper triangle and the first subdiagonal of A
+* are overwritten with the upper Hessenberg matrix H, and the
+* elements below the first subdiagonal, with the array TAU,
+* represent the orthogonal matrix Q as a product of elementary
+* reflectors. See Further Details.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* TAU (output) DOUBLE PRECISION array, dimension (N-1)
+* The scalar factors of the elementary reflectors (see Further
+* Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
+* zero.
+*
+* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The length of the array WORK. LWORK >= max(1,N).
+* For optimum performance LWORK >= N*NB, where NB is the
+* optimal blocksize.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+*
+* Further Details
+* ===============
+*
+* The matrix Q is represented as a product of (ihi-ilo) elementary
+* reflectors
+*
+* Q = H(ilo) H(ilo+1) . . . H(ihi-1).
+*
+* Each H(i) has the form
+*
+* H(i) = I - tau * v * v'
+*
+* where tau is a real scalar, and v is a real vector with
+* v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
+* exit in A(i+2:ihi,i), and tau in TAU(i).
+*
+* The contents of A are illustrated by the following example, with
+* n = 7, ilo = 2 and ihi = 6:
+*
+* on entry, on exit,
+*
+* ( a a a a a a a ) ( a a h h h h a )
+* ( a a a a a a ) ( a h h h h a )
+* ( a a a a a a ) ( h h h h h h )
+* ( a a a a a a ) ( v2 h h h h h )
+* ( a a a a a a ) ( v2 v3 h h h h )
+* ( a a a a a a ) ( v2 v3 v4 h h h )
+* ( a ) ( a )
+*
+* where a denotes an element of the original matrix A, h denotes a
+* modified element of the upper Hessenberg matrix H, and vi denotes an
+* element of the vector defining H(i).
+*
+* This file is a slight modification of LAPACK-3.0's DGEHRD
+* subroutine incorporating improvements proposed by Quintana-Orti and
+* Van de Geijn (2005).
+*
+* =====================================================================
+*
+* .. Parameters ..
+ INTEGER NBMAX, LDT
+ PARAMETER ( NBMAX = 64, LDT = NBMAX+1 )
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0,
+ $ ONE = 1.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY
+ INTEGER I, IB, IINFO, IWS, J, LDWORK, LWKOPT, NB,
+ $ NBMIN, NH, NX
+ DOUBLE PRECISION EI
+* ..
+* .. Local Arrays ..
+ DOUBLE PRECISION T( LDT, NBMAX )
+* ..
+* .. External Subroutines ..
+ EXTERNAL DAXPY, DGEHD2, DGEMM, DLAHR2, DLARFB, DTRMM,
+ $ XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. External Functions ..
+ INTEGER ILAENV
+ EXTERNAL ILAENV
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters
+*
+ INFO = 0
+ NB = MIN( NBMAX, ILAENV( 1, 'DGEHRD', ' ', N, ILO, IHI, -1 ) )
+ LWKOPT = N*NB
+ WORK( 1 ) = LWKOPT
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( N.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
+ INFO = -2
+ ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -5
+ ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
+ INFO = -8
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DGEHRD', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Set elements 1:ILO-1 and IHI:N-1 of TAU to zero
+*
+ DO 10 I = 1, ILO - 1
+ TAU( I ) = ZERO
+ 10 CONTINUE
+ DO 20 I = MAX( 1, IHI ), N - 1
+ TAU( I ) = ZERO
+ 20 CONTINUE
+*
+* Quick return if possible
+*
+ NH = IHI - ILO + 1
+ IF( NH.LE.1 ) THEN
+ WORK( 1 ) = 1
+ RETURN
+ END IF
+*
+* Determine the block size
+*
+ NB = MIN( NBMAX, ILAENV( 1, 'DGEHRD', ' ', N, ILO, IHI, -1 ) )
+ NBMIN = 2
+ IWS = 1
+ IF( NB.GT.1 .AND. NB.LT.NH ) THEN
+*
+* Determine when to cross over from blocked to unblocked code
+* (last block is always handled by unblocked code)
+*
+ NX = MAX( NB, ILAENV( 3, 'DGEHRD', ' ', N, ILO, IHI, -1 ) )
+ IF( NX.LT.NH ) THEN
+*
+* Determine if workspace is large enough for blocked code
+*
+ IWS = N*NB
+ IF( LWORK.LT.IWS ) THEN
+*
+* Not enough workspace to use optimal NB: determine the
+* minimum value of NB, and reduce NB or force use of
+* unblocked code
+*
+ NBMIN = MAX( 2, ILAENV( 2, 'DGEHRD', ' ', N, ILO, IHI,
+ $ -1 ) )
+ IF( LWORK.GE.N*NBMIN ) THEN
+ NB = LWORK / N
+ ELSE
+ NB = 1
+ END IF
+ END IF
+ END IF
+ END IF
+ LDWORK = N
+*
+ IF( NB.LT.NBMIN .OR. NB.GE.NH ) THEN
+*
+* Use unblocked code below
+*
+ I = ILO
+*
+ ELSE
+*
+* Use blocked code
+*
+ DO 40 I = ILO, IHI - 1 - NX, NB
+ IB = MIN( NB, IHI-I )
+*
+* Reduce columns i:i+ib-1 to Hessenberg form, returning the
+* matrices V and T of the block reflector H = I - V*T*V'
+* which performs the reduction, and also the matrix Y = A*V*T
+*
+ CALL DLAHR2( IHI, I, IB, A( 1, I ), LDA, TAU( I ), T, LDT,
+ $ WORK, LDWORK )
+*
+* Apply the block reflector H to A(1:ihi,i+ib:ihi) from the
+* right, computing A := A - Y * V'. V(i+ib,ib-1) must be set
+* to 1
+*
+ EI = A( I+IB, I+IB-1 )
+ A( I+IB, I+IB-1 ) = ONE
+ CALL DGEMM( 'No transpose', 'Transpose',
+ $ IHI, IHI-I-IB+1,
+ $ IB, -ONE, WORK, LDWORK, A( I+IB, I ), LDA, ONE,
+ $ A( 1, I+IB ), LDA )
+ A( I+IB, I+IB-1 ) = EI
+*
+* Apply the block reflector H to A(1:i,i+1:i+ib-1) from the
+* right
+*
+ CALL DTRMM( 'Right', 'Lower', 'Transpose',
+ $ 'Unit', I, IB-1,
+ $ ONE, A( I+1, I ), LDA, WORK, LDWORK )
+ DO 30 J = 0, IB-2
+ CALL DAXPY( I, -ONE, WORK( LDWORK*J+1 ), 1,
+ $ A( 1, I+J+1 ), 1 )
+ 30 CONTINUE
+*
+* Apply the block reflector H to A(i+1:ihi,i+ib:n) from the
+* left
+*
+ CALL DLARFB( 'Left', 'Transpose', 'Forward',
+ $ 'Columnwise',
+ $ IHI-I, N-I-IB+1, IB, A( I+1, I ), LDA, T, LDT,
+ $ A( I+1, I+IB ), LDA, WORK, LDWORK )
+ 40 CONTINUE
+ END IF
+*
+* Use unblocked code to reduce the rest of the matrix
+*
+ CALL DGEHD2( N, I, IHI, A, LDA, TAU, WORK, IINFO )
+ WORK( 1 ) = IWS
+*
+ RETURN
+*
+* End of DGEHRD
+*
+ END