diff options
Diffstat (limited to '2.3-1/src/fortran/lapack/dgegs.f')
-rw-r--r-- | 2.3-1/src/fortran/lapack/dgegs.f | 438 |
1 files changed, 438 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dgegs.f b/2.3-1/src/fortran/lapack/dgegs.f new file mode 100644 index 00000000..85c32531 --- /dev/null +++ b/2.3-1/src/fortran/lapack/dgegs.f @@ -0,0 +1,438 @@ + SUBROUTINE DGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR, + $ ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK, + $ LWORK, INFO ) +* +* -- LAPACK driver routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + CHARACTER JOBVSL, JOBVSR + INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N +* .. +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ), + $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ), + $ VSR( LDVSR, * ), WORK( * ) +* .. +* +* Purpose +* ======= +* +* This routine is deprecated and has been replaced by routine DGGES. +* +* DGEGS computes the eigenvalues, real Schur form, and, optionally, +* left and or/right Schur vectors of a real matrix pair (A,B). +* Given two square matrices A and B, the generalized real Schur +* factorization has the form +* +* A = Q*S*Z**T, B = Q*T*Z**T +* +* where Q and Z are orthogonal matrices, T is upper triangular, and S +* is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal +* blocks, the 2-by-2 blocks corresponding to complex conjugate pairs +* of eigenvalues of (A,B). The columns of Q are the left Schur vectors +* and the columns of Z are the right Schur vectors. +* +* If only the eigenvalues of (A,B) are needed, the driver routine +* DGEGV should be used instead. See DGEGV for a description of the +* eigenvalues of the generalized nonsymmetric eigenvalue problem +* (GNEP). +* +* Arguments +* ========= +* +* JOBVSL (input) CHARACTER*1 +* = 'N': do not compute the left Schur vectors; +* = 'V': compute the left Schur vectors (returned in VSL). +* +* JOBVSR (input) CHARACTER*1 +* = 'N': do not compute the right Schur vectors; +* = 'V': compute the right Schur vectors (returned in VSR). +* +* N (input) INTEGER +* The order of the matrices A, B, VSL, and VSR. N >= 0. +* +* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) +* On entry, the matrix A. +* On exit, the upper quasi-triangular matrix S from the +* generalized real Schur factorization. +* +* LDA (input) INTEGER +* The leading dimension of A. LDA >= max(1,N). +* +* B (input/output) DOUBLE PRECISION array, dimension (LDB, N) +* On entry, the matrix B. +* On exit, the upper triangular matrix T from the generalized +* real Schur factorization. +* +* LDB (input) INTEGER +* The leading dimension of B. LDB >= max(1,N). +* +* ALPHAR (output) DOUBLE PRECISION array, dimension (N) +* The real parts of each scalar alpha defining an eigenvalue +* of GNEP. +* +* ALPHAI (output) DOUBLE PRECISION array, dimension (N) +* The imaginary parts of each scalar alpha defining an +* eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th +* eigenvalue is real; if positive, then the j-th and (j+1)-st +* eigenvalues are a complex conjugate pair, with +* ALPHAI(j+1) = -ALPHAI(j). +* +* BETA (output) DOUBLE PRECISION array, dimension (N) +* The scalars beta that define the eigenvalues of GNEP. +* Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and +* beta = BETA(j) represent the j-th eigenvalue of the matrix +* pair (A,B), in one of the forms lambda = alpha/beta or +* mu = beta/alpha. Since either lambda or mu may overflow, +* they should not, in general, be computed. +* +* VSL (output) DOUBLE PRECISION array, dimension (LDVSL,N) +* If JOBVSL = 'V', the matrix of left Schur vectors Q. +* Not referenced if JOBVSL = 'N'. +* +* LDVSL (input) INTEGER +* The leading dimension of the matrix VSL. LDVSL >=1, and +* if JOBVSL = 'V', LDVSL >= N. +* +* VSR (output) DOUBLE PRECISION array, dimension (LDVSR,N) +* If JOBVSR = 'V', the matrix of right Schur vectors Z. +* Not referenced if JOBVSR = 'N'. +* +* LDVSR (input) INTEGER +* The leading dimension of the matrix VSR. LDVSR >= 1, and +* if JOBVSR = 'V', LDVSR >= N. +* +* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. +* +* LWORK (input) INTEGER +* The dimension of the array WORK. LWORK >= max(1,4*N). +* For good performance, LWORK must generally be larger. +* To compute the optimal value of LWORK, call ILAENV to get +* blocksizes (for DGEQRF, DORMQR, and DORGQR.) Then compute: +* NB -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR +* The optimal LWORK is 2*N + N*(NB+1). +* +* If LWORK = -1, then a workspace query is assumed; the routine +* only calculates the optimal size of the WORK array, returns +* this value as the first entry of the WORK array, and no error +* message related to LWORK is issued by XERBLA. +* +* INFO (output) INTEGER +* = 0: successful exit +* < 0: if INFO = -i, the i-th argument had an illegal value. +* = 1,...,N: +* The QZ iteration failed. (A,B) are not in Schur +* form, but ALPHAR(j), ALPHAI(j), and BETA(j) should +* be correct for j=INFO+1,...,N. +* > N: errors that usually indicate LAPACK problems: +* =N+1: error return from DGGBAL +* =N+2: error return from DGEQRF +* =N+3: error return from DORMQR +* =N+4: error return from DORGQR +* =N+5: error return from DGGHRD +* =N+6: error return from DHGEQZ (other than failed +* iteration) +* =N+7: error return from DGGBAK (computing VSL) +* =N+8: error return from DGGBAK (computing VSR) +* =N+9: error return from DLASCL (various places) +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE + PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) +* .. +* .. Local Scalars .. + LOGICAL ILASCL, ILBSCL, ILVSL, ILVSR, LQUERY + INTEGER ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO, + $ IRIGHT, IROWS, ITAU, IWORK, LOPT, LWKMIN, + $ LWKOPT, NB, NB1, NB2, NB3 + DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, + $ SAFMIN, SMLNUM +* .. +* .. External Subroutines .. + EXTERNAL DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLACPY, + $ DLASCL, DLASET, DORGQR, DORMQR, XERBLA +* .. +* .. External Functions .. + LOGICAL LSAME + INTEGER ILAENV + DOUBLE PRECISION DLAMCH, DLANGE + EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE +* .. +* .. Intrinsic Functions .. + INTRINSIC INT, MAX +* .. +* .. Executable Statements .. +* +* Decode the input arguments +* + IF( LSAME( JOBVSL, 'N' ) ) THEN + IJOBVL = 1 + ILVSL = .FALSE. + ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN + IJOBVL = 2 + ILVSL = .TRUE. + ELSE + IJOBVL = -1 + ILVSL = .FALSE. + END IF +* + IF( LSAME( JOBVSR, 'N' ) ) THEN + IJOBVR = 1 + ILVSR = .FALSE. + ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN + IJOBVR = 2 + ILVSR = .TRUE. + ELSE + IJOBVR = -1 + ILVSR = .FALSE. + END IF +* +* Test the input arguments +* + LWKMIN = MAX( 4*N, 1 ) + LWKOPT = LWKMIN + WORK( 1 ) = LWKOPT + LQUERY = ( LWORK.EQ.-1 ) + INFO = 0 + IF( IJOBVL.LE.0 ) THEN + INFO = -1 + ELSE IF( IJOBVR.LE.0 ) THEN + INFO = -2 + ELSE IF( N.LT.0 ) THEN + INFO = -3 + ELSE IF( LDA.LT.MAX( 1, N ) ) THEN + INFO = -5 + ELSE IF( LDB.LT.MAX( 1, N ) ) THEN + INFO = -7 + ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN + INFO = -12 + ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN + INFO = -14 + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN + INFO = -16 + END IF +* + IF( INFO.EQ.0 ) THEN + NB1 = ILAENV( 1, 'DGEQRF', ' ', N, N, -1, -1 ) + NB2 = ILAENV( 1, 'DORMQR', ' ', N, N, N, -1 ) + NB3 = ILAENV( 1, 'DORGQR', ' ', N, N, N, -1 ) + NB = MAX( NB1, NB2, NB3 ) + LOPT = 2*N + N*( NB+1 ) + WORK( 1 ) = LOPT + END IF +* + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DGEGS ', -INFO ) + RETURN + ELSE IF( LQUERY ) THEN + RETURN + END IF +* +* Quick return if possible +* + IF( N.EQ.0 ) + $ RETURN +* +* Get machine constants +* + EPS = DLAMCH( 'E' )*DLAMCH( 'B' ) + SAFMIN = DLAMCH( 'S' ) + SMLNUM = N*SAFMIN / EPS + BIGNUM = ONE / SMLNUM +* +* Scale A if max element outside range [SMLNUM,BIGNUM] +* + ANRM = DLANGE( 'M', N, N, A, LDA, WORK ) + ILASCL = .FALSE. + IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN + ANRMTO = SMLNUM + ILASCL = .TRUE. + ELSE IF( ANRM.GT.BIGNUM ) THEN + ANRMTO = BIGNUM + ILASCL = .TRUE. + END IF +* + IF( ILASCL ) THEN + CALL DLASCL( 'G', -1, -1, ANRM, ANRMTO, N, N, A, LDA, IINFO ) + IF( IINFO.NE.0 ) THEN + INFO = N + 9 + RETURN + END IF + END IF +* +* Scale B if max element outside range [SMLNUM,BIGNUM] +* + BNRM = DLANGE( 'M', N, N, B, LDB, WORK ) + ILBSCL = .FALSE. + IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN + BNRMTO = SMLNUM + ILBSCL = .TRUE. + ELSE IF( BNRM.GT.BIGNUM ) THEN + BNRMTO = BIGNUM + ILBSCL = .TRUE. + END IF +* + IF( ILBSCL ) THEN + CALL DLASCL( 'G', -1, -1, BNRM, BNRMTO, N, N, B, LDB, IINFO ) + IF( IINFO.NE.0 ) THEN + INFO = N + 9 + RETURN + END IF + END IF +* +* Permute the matrix to make it more nearly triangular +* Workspace layout: (2*N words -- "work..." not actually used) +* left_permutation, right_permutation, work... +* + ILEFT = 1 + IRIGHT = N + 1 + IWORK = IRIGHT + N + CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ), + $ WORK( IRIGHT ), WORK( IWORK ), IINFO ) + IF( IINFO.NE.0 ) THEN + INFO = N + 1 + GO TO 10 + END IF +* +* Reduce B to triangular form, and initialize VSL and/or VSR +* Workspace layout: ("work..." must have at least N words) +* left_permutation, right_permutation, tau, work... +* + IROWS = IHI + 1 - ILO + ICOLS = N + 1 - ILO + ITAU = IWORK + IWORK = ITAU + IROWS + CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ), + $ WORK( IWORK ), LWORK+1-IWORK, IINFO ) + IF( IINFO.GE.0 ) + $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 ) + IF( IINFO.NE.0 ) THEN + INFO = N + 2 + GO TO 10 + END IF +* + CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB, + $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ), + $ LWORK+1-IWORK, IINFO ) + IF( IINFO.GE.0 ) + $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 ) + IF( IINFO.NE.0 ) THEN + INFO = N + 3 + GO TO 10 + END IF +* + IF( ILVSL ) THEN + CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL ) + CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB, + $ VSL( ILO+1, ILO ), LDVSL ) + CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL, + $ WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK, + $ IINFO ) + IF( IINFO.GE.0 ) + $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 ) + IF( IINFO.NE.0 ) THEN + INFO = N + 4 + GO TO 10 + END IF + END IF +* + IF( ILVSR ) + $ CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR ) +* +* Reduce to generalized Hessenberg form +* + CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL, + $ LDVSL, VSR, LDVSR, IINFO ) + IF( IINFO.NE.0 ) THEN + INFO = N + 5 + GO TO 10 + END IF +* +* Perform QZ algorithm, computing Schur vectors if desired +* Workspace layout: ("work..." must have at least 1 word) +* left_permutation, right_permutation, work... +* + IWORK = ITAU + CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, + $ ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, + $ WORK( IWORK ), LWORK+1-IWORK, IINFO ) + IF( IINFO.GE.0 ) + $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 ) + IF( IINFO.NE.0 ) THEN + IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN + INFO = IINFO + ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN + INFO = IINFO - N + ELSE + INFO = N + 6 + END IF + GO TO 10 + END IF +* +* Apply permutation to VSL and VSR +* + IF( ILVSL ) THEN + CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ), + $ WORK( IRIGHT ), N, VSL, LDVSL, IINFO ) + IF( IINFO.NE.0 ) THEN + INFO = N + 7 + GO TO 10 + END IF + END IF + IF( ILVSR ) THEN + CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ), + $ WORK( IRIGHT ), N, VSR, LDVSR, IINFO ) + IF( IINFO.NE.0 ) THEN + INFO = N + 8 + GO TO 10 + END IF + END IF +* +* Undo scaling +* + IF( ILASCL ) THEN + CALL DLASCL( 'H', -1, -1, ANRMTO, ANRM, N, N, A, LDA, IINFO ) + IF( IINFO.NE.0 ) THEN + INFO = N + 9 + RETURN + END IF + CALL DLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAR, N, + $ IINFO ) + IF( IINFO.NE.0 ) THEN + INFO = N + 9 + RETURN + END IF + CALL DLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAI, N, + $ IINFO ) + IF( IINFO.NE.0 ) THEN + INFO = N + 9 + RETURN + END IF + END IF +* + IF( ILBSCL ) THEN + CALL DLASCL( 'U', -1, -1, BNRMTO, BNRM, N, N, B, LDB, IINFO ) + IF( IINFO.NE.0 ) THEN + INFO = N + 9 + RETURN + END IF + CALL DLASCL( 'G', -1, -1, BNRMTO, BNRM, N, 1, BETA, N, IINFO ) + IF( IINFO.NE.0 ) THEN + INFO = N + 9 + RETURN + END IF + END IF +* + 10 CONTINUE + WORK( 1 ) = LWKOPT +* + RETURN +* +* End of DGEGS +* + END |