summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dgegs.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/dgegs.f')
-rw-r--r--2.3-1/src/fortran/lapack/dgegs.f438
1 files changed, 438 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dgegs.f b/2.3-1/src/fortran/lapack/dgegs.f
new file mode 100644
index 00000000..85c32531
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dgegs.f
@@ -0,0 +1,438 @@
+ SUBROUTINE DGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR,
+ $ ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
+ $ LWORK, INFO )
+*
+* -- LAPACK driver routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBVSL, JOBVSR
+ INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
+ $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
+ $ VSR( LDVSR, * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* This routine is deprecated and has been replaced by routine DGGES.
+*
+* DGEGS computes the eigenvalues, real Schur form, and, optionally,
+* left and or/right Schur vectors of a real matrix pair (A,B).
+* Given two square matrices A and B, the generalized real Schur
+* factorization has the form
+*
+* A = Q*S*Z**T, B = Q*T*Z**T
+*
+* where Q and Z are orthogonal matrices, T is upper triangular, and S
+* is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal
+* blocks, the 2-by-2 blocks corresponding to complex conjugate pairs
+* of eigenvalues of (A,B). The columns of Q are the left Schur vectors
+* and the columns of Z are the right Schur vectors.
+*
+* If only the eigenvalues of (A,B) are needed, the driver routine
+* DGEGV should be used instead. See DGEGV for a description of the
+* eigenvalues of the generalized nonsymmetric eigenvalue problem
+* (GNEP).
+*
+* Arguments
+* =========
+*
+* JOBVSL (input) CHARACTER*1
+* = 'N': do not compute the left Schur vectors;
+* = 'V': compute the left Schur vectors (returned in VSL).
+*
+* JOBVSR (input) CHARACTER*1
+* = 'N': do not compute the right Schur vectors;
+* = 'V': compute the right Schur vectors (returned in VSR).
+*
+* N (input) INTEGER
+* The order of the matrices A, B, VSL, and VSR. N >= 0.
+*
+* A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
+* On entry, the matrix A.
+* On exit, the upper quasi-triangular matrix S from the
+* generalized real Schur factorization.
+*
+* LDA (input) INTEGER
+* The leading dimension of A. LDA >= max(1,N).
+*
+* B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
+* On entry, the matrix B.
+* On exit, the upper triangular matrix T from the generalized
+* real Schur factorization.
+*
+* LDB (input) INTEGER
+* The leading dimension of B. LDB >= max(1,N).
+*
+* ALPHAR (output) DOUBLE PRECISION array, dimension (N)
+* The real parts of each scalar alpha defining an eigenvalue
+* of GNEP.
+*
+* ALPHAI (output) DOUBLE PRECISION array, dimension (N)
+* The imaginary parts of each scalar alpha defining an
+* eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th
+* eigenvalue is real; if positive, then the j-th and (j+1)-st
+* eigenvalues are a complex conjugate pair, with
+* ALPHAI(j+1) = -ALPHAI(j).
+*
+* BETA (output) DOUBLE PRECISION array, dimension (N)
+* The scalars beta that define the eigenvalues of GNEP.
+* Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
+* beta = BETA(j) represent the j-th eigenvalue of the matrix
+* pair (A,B), in one of the forms lambda = alpha/beta or
+* mu = beta/alpha. Since either lambda or mu may overflow,
+* they should not, in general, be computed.
+*
+* VSL (output) DOUBLE PRECISION array, dimension (LDVSL,N)
+* If JOBVSL = 'V', the matrix of left Schur vectors Q.
+* Not referenced if JOBVSL = 'N'.
+*
+* LDVSL (input) INTEGER
+* The leading dimension of the matrix VSL. LDVSL >=1, and
+* if JOBVSL = 'V', LDVSL >= N.
+*
+* VSR (output) DOUBLE PRECISION array, dimension (LDVSR,N)
+* If JOBVSR = 'V', the matrix of right Schur vectors Z.
+* Not referenced if JOBVSR = 'N'.
+*
+* LDVSR (input) INTEGER
+* The leading dimension of the matrix VSR. LDVSR >= 1, and
+* if JOBVSR = 'V', LDVSR >= N.
+*
+* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK. LWORK >= max(1,4*N).
+* For good performance, LWORK must generally be larger.
+* To compute the optimal value of LWORK, call ILAENV to get
+* blocksizes (for DGEQRF, DORMQR, and DORGQR.) Then compute:
+* NB -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR
+* The optimal LWORK is 2*N + N*(NB+1).
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+* = 1,...,N:
+* The QZ iteration failed. (A,B) are not in Schur
+* form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
+* be correct for j=INFO+1,...,N.
+* > N: errors that usually indicate LAPACK problems:
+* =N+1: error return from DGGBAL
+* =N+2: error return from DGEQRF
+* =N+3: error return from DORMQR
+* =N+4: error return from DORGQR
+* =N+5: error return from DGGHRD
+* =N+6: error return from DHGEQZ (other than failed
+* iteration)
+* =N+7: error return from DGGBAK (computing VSL)
+* =N+8: error return from DGGBAK (computing VSR)
+* =N+9: error return from DLASCL (various places)
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL ILASCL, ILBSCL, ILVSL, ILVSR, LQUERY
+ INTEGER ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
+ $ IRIGHT, IROWS, ITAU, IWORK, LOPT, LWKMIN,
+ $ LWKOPT, NB, NB1, NB2, NB3
+ DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
+ $ SAFMIN, SMLNUM
+* ..
+* .. External Subroutines ..
+ EXTERNAL DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLACPY,
+ $ DLASCL, DLASET, DORGQR, DORMQR, XERBLA
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ DOUBLE PRECISION DLAMCH, DLANGE
+ EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC INT, MAX
+* ..
+* .. Executable Statements ..
+*
+* Decode the input arguments
+*
+ IF( LSAME( JOBVSL, 'N' ) ) THEN
+ IJOBVL = 1
+ ILVSL = .FALSE.
+ ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
+ IJOBVL = 2
+ ILVSL = .TRUE.
+ ELSE
+ IJOBVL = -1
+ ILVSL = .FALSE.
+ END IF
+*
+ IF( LSAME( JOBVSR, 'N' ) ) THEN
+ IJOBVR = 1
+ ILVSR = .FALSE.
+ ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
+ IJOBVR = 2
+ ILVSR = .TRUE.
+ ELSE
+ IJOBVR = -1
+ ILVSR = .FALSE.
+ END IF
+*
+* Test the input arguments
+*
+ LWKMIN = MAX( 4*N, 1 )
+ LWKOPT = LWKMIN
+ WORK( 1 ) = LWKOPT
+ LQUERY = ( LWORK.EQ.-1 )
+ INFO = 0
+ IF( IJOBVL.LE.0 ) THEN
+ INFO = -1
+ ELSE IF( IJOBVR.LE.0 ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -5
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -7
+ ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
+ INFO = -12
+ ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
+ INFO = -14
+ ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -16
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+ NB1 = ILAENV( 1, 'DGEQRF', ' ', N, N, -1, -1 )
+ NB2 = ILAENV( 1, 'DORMQR', ' ', N, N, N, -1 )
+ NB3 = ILAENV( 1, 'DORGQR', ' ', N, N, N, -1 )
+ NB = MAX( NB1, NB2, NB3 )
+ LOPT = 2*N + N*( NB+1 )
+ WORK( 1 ) = LOPT
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DGEGS ', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+* Get machine constants
+*
+ EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
+ SAFMIN = DLAMCH( 'S' )
+ SMLNUM = N*SAFMIN / EPS
+ BIGNUM = ONE / SMLNUM
+*
+* Scale A if max element outside range [SMLNUM,BIGNUM]
+*
+ ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
+ ILASCL = .FALSE.
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
+ ANRMTO = SMLNUM
+ ILASCL = .TRUE.
+ ELSE IF( ANRM.GT.BIGNUM ) THEN
+ ANRMTO = BIGNUM
+ ILASCL = .TRUE.
+ END IF
+*
+ IF( ILASCL ) THEN
+ CALL DLASCL( 'G', -1, -1, ANRM, ANRMTO, N, N, A, LDA, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ INFO = N + 9
+ RETURN
+ END IF
+ END IF
+*
+* Scale B if max element outside range [SMLNUM,BIGNUM]
+*
+ BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
+ ILBSCL = .FALSE.
+ IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
+ BNRMTO = SMLNUM
+ ILBSCL = .TRUE.
+ ELSE IF( BNRM.GT.BIGNUM ) THEN
+ BNRMTO = BIGNUM
+ ILBSCL = .TRUE.
+ END IF
+*
+ IF( ILBSCL ) THEN
+ CALL DLASCL( 'G', -1, -1, BNRM, BNRMTO, N, N, B, LDB, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ INFO = N + 9
+ RETURN
+ END IF
+ END IF
+*
+* Permute the matrix to make it more nearly triangular
+* Workspace layout: (2*N words -- "work..." not actually used)
+* left_permutation, right_permutation, work...
+*
+ ILEFT = 1
+ IRIGHT = N + 1
+ IWORK = IRIGHT + N
+ CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
+ $ WORK( IRIGHT ), WORK( IWORK ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ INFO = N + 1
+ GO TO 10
+ END IF
+*
+* Reduce B to triangular form, and initialize VSL and/or VSR
+* Workspace layout: ("work..." must have at least N words)
+* left_permutation, right_permutation, tau, work...
+*
+ IROWS = IHI + 1 - ILO
+ ICOLS = N + 1 - ILO
+ ITAU = IWORK
+ IWORK = ITAU + IROWS
+ CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
+ $ WORK( IWORK ), LWORK+1-IWORK, IINFO )
+ IF( IINFO.GE.0 )
+ $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
+ IF( IINFO.NE.0 ) THEN
+ INFO = N + 2
+ GO TO 10
+ END IF
+*
+ CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
+ $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
+ $ LWORK+1-IWORK, IINFO )
+ IF( IINFO.GE.0 )
+ $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
+ IF( IINFO.NE.0 ) THEN
+ INFO = N + 3
+ GO TO 10
+ END IF
+*
+ IF( ILVSL ) THEN
+ CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
+ CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
+ $ VSL( ILO+1, ILO ), LDVSL )
+ CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
+ $ WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
+ $ IINFO )
+ IF( IINFO.GE.0 )
+ $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
+ IF( IINFO.NE.0 ) THEN
+ INFO = N + 4
+ GO TO 10
+ END IF
+ END IF
+*
+ IF( ILVSR )
+ $ CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
+*
+* Reduce to generalized Hessenberg form
+*
+ CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
+ $ LDVSL, VSR, LDVSR, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ INFO = N + 5
+ GO TO 10
+ END IF
+*
+* Perform QZ algorithm, computing Schur vectors if desired
+* Workspace layout: ("work..." must have at least 1 word)
+* left_permutation, right_permutation, work...
+*
+ IWORK = ITAU
+ CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
+ $ ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
+ $ WORK( IWORK ), LWORK+1-IWORK, IINFO )
+ IF( IINFO.GE.0 )
+ $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
+ IF( IINFO.NE.0 ) THEN
+ IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
+ INFO = IINFO
+ ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
+ INFO = IINFO - N
+ ELSE
+ INFO = N + 6
+ END IF
+ GO TO 10
+ END IF
+*
+* Apply permutation to VSL and VSR
+*
+ IF( ILVSL ) THEN
+ CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
+ $ WORK( IRIGHT ), N, VSL, LDVSL, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ INFO = N + 7
+ GO TO 10
+ END IF
+ END IF
+ IF( ILVSR ) THEN
+ CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
+ $ WORK( IRIGHT ), N, VSR, LDVSR, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ INFO = N + 8
+ GO TO 10
+ END IF
+ END IF
+*
+* Undo scaling
+*
+ IF( ILASCL ) THEN
+ CALL DLASCL( 'H', -1, -1, ANRMTO, ANRM, N, N, A, LDA, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ INFO = N + 9
+ RETURN
+ END IF
+ CALL DLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAR, N,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ INFO = N + 9
+ RETURN
+ END IF
+ CALL DLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAI, N,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ INFO = N + 9
+ RETURN
+ END IF
+ END IF
+*
+ IF( ILBSCL ) THEN
+ CALL DLASCL( 'U', -1, -1, BNRMTO, BNRM, N, N, B, LDB, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ INFO = N + 9
+ RETURN
+ END IF
+ CALL DLASCL( 'G', -1, -1, BNRMTO, BNRM, N, 1, BETA, N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ INFO = N + 9
+ RETURN
+ END IF
+ END IF
+*
+ 10 CONTINUE
+ WORK( 1 ) = LWKOPT
+*
+ RETURN
+*
+* End of DGEGS
+*
+ END