summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dgees.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/dgees.f')
-rw-r--r--2.3-1/src/fortran/lapack/dgees.f434
1 files changed, 434 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dgees.f b/2.3-1/src/fortran/lapack/dgees.f
new file mode 100644
index 00000000..96ba8019
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dgees.f
@@ -0,0 +1,434 @@
+ SUBROUTINE DGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI,
+ $ VS, LDVS, WORK, LWORK, BWORK, INFO )
+*
+* -- LAPACK driver routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBVS, SORT
+ INTEGER INFO, LDA, LDVS, LWORK, N, SDIM
+* ..
+* .. Array Arguments ..
+ LOGICAL BWORK( * )
+ DOUBLE PRECISION A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
+ $ WR( * )
+* ..
+* .. Function Arguments ..
+ LOGICAL SELECT
+ EXTERNAL SELECT
+* ..
+*
+* Purpose
+* =======
+*
+* DGEES computes for an N-by-N real nonsymmetric matrix A, the
+* eigenvalues, the real Schur form T, and, optionally, the matrix of
+* Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T).
+*
+* Optionally, it also orders the eigenvalues on the diagonal of the
+* real Schur form so that selected eigenvalues are at the top left.
+* The leading columns of Z then form an orthonormal basis for the
+* invariant subspace corresponding to the selected eigenvalues.
+*
+* A matrix is in real Schur form if it is upper quasi-triangular with
+* 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the
+* form
+* [ a b ]
+* [ c a ]
+*
+* where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
+*
+* Arguments
+* =========
+*
+* JOBVS (input) CHARACTER*1
+* = 'N': Schur vectors are not computed;
+* = 'V': Schur vectors are computed.
+*
+* SORT (input) CHARACTER*1
+* Specifies whether or not to order the eigenvalues on the
+* diagonal of the Schur form.
+* = 'N': Eigenvalues are not ordered;
+* = 'S': Eigenvalues are ordered (see SELECT).
+*
+* SELECT (external procedure) LOGICAL FUNCTION of two DOUBLE PRECISION arguments
+* SELECT must be declared EXTERNAL in the calling subroutine.
+* If SORT = 'S', SELECT is used to select eigenvalues to sort
+* to the top left of the Schur form.
+* If SORT = 'N', SELECT is not referenced.
+* An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
+* SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex
+* conjugate pair of eigenvalues is selected, then both complex
+* eigenvalues are selected.
+* Note that a selected complex eigenvalue may no longer
+* satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
+* ordering may change the value of complex eigenvalues
+* (especially if the eigenvalue is ill-conditioned); in this
+* case INFO is set to N+2 (see INFO below).
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+* On entry, the N-by-N matrix A.
+* On exit, A has been overwritten by its real Schur form T.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* SDIM (output) INTEGER
+* If SORT = 'N', SDIM = 0.
+* If SORT = 'S', SDIM = number of eigenvalues (after sorting)
+* for which SELECT is true. (Complex conjugate
+* pairs for which SELECT is true for either
+* eigenvalue count as 2.)
+*
+* WR (output) DOUBLE PRECISION array, dimension (N)
+* WI (output) DOUBLE PRECISION array, dimension (N)
+* WR and WI contain the real and imaginary parts,
+* respectively, of the computed eigenvalues in the same order
+* that they appear on the diagonal of the output Schur form T.
+* Complex conjugate pairs of eigenvalues will appear
+* consecutively with the eigenvalue having the positive
+* imaginary part first.
+*
+* VS (output) DOUBLE PRECISION array, dimension (LDVS,N)
+* If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
+* vectors.
+* If JOBVS = 'N', VS is not referenced.
+*
+* LDVS (input) INTEGER
+* The leading dimension of the array VS. LDVS >= 1; if
+* JOBVS = 'V', LDVS >= N.
+*
+* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) contains the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK. LWORK >= max(1,3*N).
+* For good performance, LWORK must generally be larger.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* BWORK (workspace) LOGICAL array, dimension (N)
+* Not referenced if SORT = 'N'.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+* > 0: if INFO = i, and i is
+* <= N: the QR algorithm failed to compute all the
+* eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
+* contain those eigenvalues which have converged; if
+* JOBVS = 'V', VS contains the matrix which reduces A
+* to its partially converged Schur form.
+* = N+1: the eigenvalues could not be reordered because some
+* eigenvalues were too close to separate (the problem
+* is very ill-conditioned);
+* = N+2: after reordering, roundoff changed values of some
+* complex eigenvalues so that leading eigenvalues in
+* the Schur form no longer satisfy SELECT=.TRUE. This
+* could also be caused by underflow due to scaling.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTST,
+ $ WANTVS
+ INTEGER HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL,
+ $ IHI, ILO, INXT, IP, ITAU, IWRK, MAXWRK, MINWRK
+ DOUBLE PRECISION ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM
+* ..
+* .. Local Arrays ..
+ INTEGER IDUM( 1 )
+ DOUBLE PRECISION DUM( 1 )
+* ..
+* .. External Subroutines ..
+ EXTERNAL DCOPY, DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLACPY,
+ $ DLABAD, DLASCL, DORGHR, DSWAP, DTRSEN, XERBLA
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ DOUBLE PRECISION DLAMCH, DLANGE
+ EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ INFO = 0
+ LQUERY = ( LWORK.EQ.-1 )
+ WANTVS = LSAME( JOBVS, 'V' )
+ WANTST = LSAME( SORT, 'S' )
+ IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
+ INFO = -1
+ ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -6
+ ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
+ INFO = -11
+ END IF
+*
+* Compute workspace
+* (Note: Comments in the code beginning "Workspace:" describe the
+* minimal amount of workspace needed at that point in the code,
+* as well as the preferred amount for good performance.
+* NB refers to the optimal block size for the immediately
+* following subroutine, as returned by ILAENV.
+* HSWORK refers to the workspace preferred by DHSEQR, as
+* calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
+* the worst case.)
+*
+ IF( INFO.EQ.0 ) THEN
+ IF( N.EQ.0 ) THEN
+ MINWRK = 1
+ MAXWRK = 1
+ ELSE
+ MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
+ MINWRK = 3*N
+*
+ CALL DHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS,
+ $ WORK, -1, IEVAL )
+ HSWORK = WORK( 1 )
+*
+ IF( .NOT.WANTVS ) THEN
+ MAXWRK = MAX( MAXWRK, N + HSWORK )
+ ELSE
+ MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
+ $ 'DORGHR', ' ', N, 1, N, -1 ) )
+ MAXWRK = MAX( MAXWRK, N + HSWORK )
+ END IF
+ END IF
+ WORK( 1 ) = MAXWRK
+*
+ IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
+ INFO = -13
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DGEES ', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 ) THEN
+ SDIM = 0
+ RETURN
+ END IF
+*
+* Get machine constants
+*
+ EPS = DLAMCH( 'P' )
+ SMLNUM = DLAMCH( 'S' )
+ BIGNUM = ONE / SMLNUM
+ CALL DLABAD( SMLNUM, BIGNUM )
+ SMLNUM = SQRT( SMLNUM ) / EPS
+ BIGNUM = ONE / SMLNUM
+*
+* Scale A if max element outside range [SMLNUM,BIGNUM]
+*
+ ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
+ SCALEA = .FALSE.
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
+ SCALEA = .TRUE.
+ CSCALE = SMLNUM
+ ELSE IF( ANRM.GT.BIGNUM ) THEN
+ SCALEA = .TRUE.
+ CSCALE = BIGNUM
+ END IF
+ IF( SCALEA )
+ $ CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
+*
+* Permute the matrix to make it more nearly triangular
+* (Workspace: need N)
+*
+ IBAL = 1
+ CALL DGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
+*
+* Reduce to upper Hessenberg form
+* (Workspace: need 3*N, prefer 2*N+N*NB)
+*
+ ITAU = N + IBAL
+ IWRK = N + ITAU
+ CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
+ $ LWORK-IWRK+1, IERR )
+*
+ IF( WANTVS ) THEN
+*
+* Copy Householder vectors to VS
+*
+ CALL DLACPY( 'L', N, N, A, LDA, VS, LDVS )
+*
+* Generate orthogonal matrix in VS
+* (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
+*
+ CALL DORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
+ $ LWORK-IWRK+1, IERR )
+ END IF
+*
+ SDIM = 0
+*
+* Perform QR iteration, accumulating Schur vectors in VS if desired
+* (Workspace: need N+1, prefer N+HSWORK (see comments) )
+*
+ IWRK = ITAU
+ CALL DHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS,
+ $ WORK( IWRK ), LWORK-IWRK+1, IEVAL )
+ IF( IEVAL.GT.0 )
+ $ INFO = IEVAL
+*
+* Sort eigenvalues if desired
+*
+ IF( WANTST .AND. INFO.EQ.0 ) THEN
+ IF( SCALEA ) THEN
+ CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR )
+ CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR )
+ END IF
+ DO 10 I = 1, N
+ BWORK( I ) = SELECT( WR( I ), WI( I ) )
+ 10 CONTINUE
+*
+* Reorder eigenvalues and transform Schur vectors
+* (Workspace: none needed)
+*
+ CALL DTRSEN( 'N', JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI,
+ $ SDIM, S, SEP, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
+ $ ICOND )
+ IF( ICOND.GT.0 )
+ $ INFO = N + ICOND
+ END IF
+*
+ IF( WANTVS ) THEN
+*
+* Undo balancing
+* (Workspace: need N)
+*
+ CALL DGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS,
+ $ IERR )
+ END IF
+*
+ IF( SCALEA ) THEN
+*
+* Undo scaling for the Schur form of A
+*
+ CALL DLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
+ CALL DCOPY( N, A, LDA+1, WR, 1 )
+ IF( CSCALE.EQ.SMLNUM ) THEN
+*
+* If scaling back towards underflow, adjust WI if an
+* offdiagonal element of a 2-by-2 block in the Schur form
+* underflows.
+*
+ IF( IEVAL.GT.0 ) THEN
+ I1 = IEVAL + 1
+ I2 = IHI - 1
+ CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI,
+ $ MAX( ILO-1, 1 ), IERR )
+ ELSE IF( WANTST ) THEN
+ I1 = 1
+ I2 = N - 1
+ ELSE
+ I1 = ILO
+ I2 = IHI - 1
+ END IF
+ INXT = I1 - 1
+ DO 20 I = I1, I2
+ IF( I.LT.INXT )
+ $ GO TO 20
+ IF( WI( I ).EQ.ZERO ) THEN
+ INXT = I + 1
+ ELSE
+ IF( A( I+1, I ).EQ.ZERO ) THEN
+ WI( I ) = ZERO
+ WI( I+1 ) = ZERO
+ ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ.
+ $ ZERO ) THEN
+ WI( I ) = ZERO
+ WI( I+1 ) = ZERO
+ IF( I.GT.1 )
+ $ CALL DSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 )
+ IF( N.GT.I+1 )
+ $ CALL DSWAP( N-I-1, A( I, I+2 ), LDA,
+ $ A( I+1, I+2 ), LDA )
+ IF( WANTVS ) THEN
+ CALL DSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 )
+ END IF
+ A( I, I+1 ) = A( I+1, I )
+ A( I+1, I ) = ZERO
+ END IF
+ INXT = I + 2
+ END IF
+ 20 CONTINUE
+ END IF
+*
+* Undo scaling for the imaginary part of the eigenvalues
+*
+ CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1,
+ $ WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR )
+ END IF
+*
+ IF( WANTST .AND. INFO.EQ.0 ) THEN
+*
+* Check if reordering successful
+*
+ LASTSL = .TRUE.
+ LST2SL = .TRUE.
+ SDIM = 0
+ IP = 0
+ DO 30 I = 1, N
+ CURSL = SELECT( WR( I ), WI( I ) )
+ IF( WI( I ).EQ.ZERO ) THEN
+ IF( CURSL )
+ $ SDIM = SDIM + 1
+ IP = 0
+ IF( CURSL .AND. .NOT.LASTSL )
+ $ INFO = N + 2
+ ELSE
+ IF( IP.EQ.1 ) THEN
+*
+* Last eigenvalue of conjugate pair
+*
+ CURSL = CURSL .OR. LASTSL
+ LASTSL = CURSL
+ IF( CURSL )
+ $ SDIM = SDIM + 2
+ IP = -1
+ IF( CURSL .AND. .NOT.LST2SL )
+ $ INFO = N + 2
+ ELSE
+*
+* First eigenvalue of conjugate pair
+*
+ IP = 1
+ END IF
+ END IF
+ LST2SL = LASTSL
+ LASTSL = CURSL
+ 30 CONTINUE
+ END IF
+*
+ WORK( 1 ) = MAXWRK
+ RETURN
+*
+* End of DGEES
+*
+ END