diff options
Diffstat (limited to '2.3-1/src/fortran/blas/zhpr.f')
-rw-r--r-- | 2.3-1/src/fortran/blas/zhpr.f | 217 |
1 files changed, 217 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/blas/zhpr.f b/2.3-1/src/fortran/blas/zhpr.f new file mode 100644 index 00000000..2e368de4 --- /dev/null +++ b/2.3-1/src/fortran/blas/zhpr.f @@ -0,0 +1,217 @@ + SUBROUTINE ZHPR ( UPLO, N, ALPHA, X, INCX, AP ) +* .. Scalar Arguments .. + DOUBLE PRECISION ALPHA + INTEGER INCX, N + CHARACTER*1 UPLO +* .. Array Arguments .. + COMPLEX*16 AP( * ), X( * ) +* .. +* +* Purpose +* ======= +* +* ZHPR performs the hermitian rank 1 operation +* +* A := alpha*x*conjg( x' ) + A, +* +* where alpha is a real scalar, x is an n element vector and A is an +* n by n hermitian matrix, supplied in packed form. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the upper or lower +* triangular part of the matrix A is supplied in the packed +* array AP as follows: +* +* UPLO = 'U' or 'u' The upper triangular part of A is +* supplied in AP. +* +* UPLO = 'L' or 'l' The lower triangular part of A is +* supplied in AP. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* X - COMPLEX*16 array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* AP - COMPLEX*16 array of DIMENSION at least +* ( ( n*( n + 1 ) )/2 ). +* Before entry with UPLO = 'U' or 'u', the array AP must +* contain the upper triangular part of the hermitian matrix +* packed sequentially, column by column, so that AP( 1 ) +* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) +* and a( 2, 2 ) respectively, and so on. On exit, the array +* AP is overwritten by the upper triangular part of the +* updated matrix. +* Before entry with UPLO = 'L' or 'l', the array AP must +* contain the lower triangular part of the hermitian matrix +* packed sequentially, column by column, so that AP( 1 ) +* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) +* and a( 3, 1 ) respectively, and so on. On exit, the array +* AP is overwritten by the lower triangular part of the +* updated matrix. +* Note that the imaginary parts of the diagonal elements need +* not be set, they are assumed to be zero, and on exit they +* are set to zero. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. Local Scalars .. + COMPLEX*16 TEMP + INTEGER I, INFO, IX, J, JX, K, KK, KX +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC DCONJG, DBLE +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO, 'U' ).AND. + $ .NOT.LSAME( UPLO, 'L' ) )THEN + INFO = 1 + ELSE IF( N.LT.0 )THEN + INFO = 2 + ELSE IF( INCX.EQ.0 )THEN + INFO = 5 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZHPR ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( N.EQ.0 ).OR.( ALPHA.EQ.DBLE( ZERO ) ) ) + $ RETURN +* +* Set the start point in X if the increment is not unity. +* + IF( INCX.LE.0 )THEN + KX = 1 - ( N - 1 )*INCX + ELSE IF( INCX.NE.1 )THEN + KX = 1 + END IF +* +* Start the operations. In this version the elements of the array AP +* are accessed sequentially with one pass through AP. +* + KK = 1 + IF( LSAME( UPLO, 'U' ) )THEN +* +* Form A when upper triangle is stored in AP. +* + IF( INCX.EQ.1 )THEN + DO 20, J = 1, N + IF( X( J ).NE.ZERO )THEN + TEMP = ALPHA*DCONJG( X( J ) ) + K = KK + DO 10, I = 1, J - 1 + AP( K ) = AP( K ) + X( I )*TEMP + K = K + 1 + 10 CONTINUE + AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) ) + $ + DBLE( X( J )*TEMP ) + ELSE + AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) ) + END IF + KK = KK + J + 20 CONTINUE + ELSE + JX = KX + DO 40, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = ALPHA*DCONJG( X( JX ) ) + IX = KX + DO 30, K = KK, KK + J - 2 + AP( K ) = AP( K ) + X( IX )*TEMP + IX = IX + INCX + 30 CONTINUE + AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) ) + $ + DBLE( X( JX )*TEMP ) + ELSE + AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) ) + END IF + JX = JX + INCX + KK = KK + J + 40 CONTINUE + END IF + ELSE +* +* Form A when lower triangle is stored in AP. +* + IF( INCX.EQ.1 )THEN + DO 60, J = 1, N + IF( X( J ).NE.ZERO )THEN + TEMP = ALPHA*DCONJG( X( J ) ) + AP( KK ) = DBLE( AP( KK ) ) + DBLE( TEMP*X( J ) ) + K = KK + 1 + DO 50, I = J + 1, N + AP( K ) = AP( K ) + X( I )*TEMP + K = K + 1 + 50 CONTINUE + ELSE + AP( KK ) = DBLE( AP( KK ) ) + END IF + KK = KK + N - J + 1 + 60 CONTINUE + ELSE + JX = KX + DO 80, J = 1, N + IF( X( JX ).NE.ZERO )THEN + TEMP = ALPHA*DCONJG( X( JX ) ) + AP( KK ) = DBLE( AP( KK ) ) + DBLE( TEMP*X( JX ) ) + IX = JX + DO 70, K = KK + 1, KK + N - J + IX = IX + INCX + AP( K ) = AP( K ) + X( IX )*TEMP + 70 CONTINUE + ELSE + AP( KK ) = DBLE( AP( KK ) ) + END IF + JX = JX + INCX + KK = KK + N - J + 1 + 80 CONTINUE + END IF + END IF +* + RETURN +* +* End of ZHPR . +* + END |