summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/blas/zhpr.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/blas/zhpr.f')
-rw-r--r--2.3-1/src/fortran/blas/zhpr.f217
1 files changed, 217 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/blas/zhpr.f b/2.3-1/src/fortran/blas/zhpr.f
new file mode 100644
index 00000000..2e368de4
--- /dev/null
+++ b/2.3-1/src/fortran/blas/zhpr.f
@@ -0,0 +1,217 @@
+ SUBROUTINE ZHPR ( UPLO, N, ALPHA, X, INCX, AP )
+* .. Scalar Arguments ..
+ DOUBLE PRECISION ALPHA
+ INTEGER INCX, N
+ CHARACTER*1 UPLO
+* .. Array Arguments ..
+ COMPLEX*16 AP( * ), X( * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZHPR performs the hermitian rank 1 operation
+*
+* A := alpha*x*conjg( x' ) + A,
+*
+* where alpha is a real scalar, x is an n element vector and A is an
+* n by n hermitian matrix, supplied in packed form.
+*
+* Parameters
+* ==========
+*
+* UPLO - CHARACTER*1.
+* On entry, UPLO specifies whether the upper or lower
+* triangular part of the matrix A is supplied in the packed
+* array AP as follows:
+*
+* UPLO = 'U' or 'u' The upper triangular part of A is
+* supplied in AP.
+*
+* UPLO = 'L' or 'l' The lower triangular part of A is
+* supplied in AP.
+*
+* Unchanged on exit.
+*
+* N - INTEGER.
+* On entry, N specifies the order of the matrix A.
+* N must be at least zero.
+* Unchanged on exit.
+*
+* ALPHA - DOUBLE PRECISION.
+* On entry, ALPHA specifies the scalar alpha.
+* Unchanged on exit.
+*
+* X - COMPLEX*16 array of dimension at least
+* ( 1 + ( n - 1 )*abs( INCX ) ).
+* Before entry, the incremented array X must contain the n
+* element vector x.
+* Unchanged on exit.
+*
+* INCX - INTEGER.
+* On entry, INCX specifies the increment for the elements of
+* X. INCX must not be zero.
+* Unchanged on exit.
+*
+* AP - COMPLEX*16 array of DIMENSION at least
+* ( ( n*( n + 1 ) )/2 ).
+* Before entry with UPLO = 'U' or 'u', the array AP must
+* contain the upper triangular part of the hermitian matrix
+* packed sequentially, column by column, so that AP( 1 )
+* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
+* and a( 2, 2 ) respectively, and so on. On exit, the array
+* AP is overwritten by the upper triangular part of the
+* updated matrix.
+* Before entry with UPLO = 'L' or 'l', the array AP must
+* contain the lower triangular part of the hermitian matrix
+* packed sequentially, column by column, so that AP( 1 )
+* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
+* and a( 3, 1 ) respectively, and so on. On exit, the array
+* AP is overwritten by the lower triangular part of the
+* updated matrix.
+* Note that the imaginary parts of the diagonal elements need
+* not be set, they are assumed to be zero, and on exit they
+* are set to zero.
+*
+*
+* Level 2 Blas routine.
+*
+* -- Written on 22-October-1986.
+* Jack Dongarra, Argonne National Lab.
+* Jeremy Du Croz, Nag Central Office.
+* Sven Hammarling, Nag Central Office.
+* Richard Hanson, Sandia National Labs.
+*
+*
+* .. Parameters ..
+ COMPLEX*16 ZERO
+ PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
+* .. Local Scalars ..
+ COMPLEX*16 TEMP
+ INTEGER I, INFO, IX, J, JX, K, KK, KX
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* .. External Subroutines ..
+ EXTERNAL XERBLA
+* .. Intrinsic Functions ..
+ INTRINSIC DCONJG, DBLE
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ IF ( .NOT.LSAME( UPLO, 'U' ).AND.
+ $ .NOT.LSAME( UPLO, 'L' ) )THEN
+ INFO = 1
+ ELSE IF( N.LT.0 )THEN
+ INFO = 2
+ ELSE IF( INCX.EQ.0 )THEN
+ INFO = 5
+ END IF
+ IF( INFO.NE.0 )THEN
+ CALL XERBLA( 'ZHPR ', INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible.
+*
+ IF( ( N.EQ.0 ).OR.( ALPHA.EQ.DBLE( ZERO ) ) )
+ $ RETURN
+*
+* Set the start point in X if the increment is not unity.
+*
+ IF( INCX.LE.0 )THEN
+ KX = 1 - ( N - 1 )*INCX
+ ELSE IF( INCX.NE.1 )THEN
+ KX = 1
+ END IF
+*
+* Start the operations. In this version the elements of the array AP
+* are accessed sequentially with one pass through AP.
+*
+ KK = 1
+ IF( LSAME( UPLO, 'U' ) )THEN
+*
+* Form A when upper triangle is stored in AP.
+*
+ IF( INCX.EQ.1 )THEN
+ DO 20, J = 1, N
+ IF( X( J ).NE.ZERO )THEN
+ TEMP = ALPHA*DCONJG( X( J ) )
+ K = KK
+ DO 10, I = 1, J - 1
+ AP( K ) = AP( K ) + X( I )*TEMP
+ K = K + 1
+ 10 CONTINUE
+ AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) )
+ $ + DBLE( X( J )*TEMP )
+ ELSE
+ AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) )
+ END IF
+ KK = KK + J
+ 20 CONTINUE
+ ELSE
+ JX = KX
+ DO 40, J = 1, N
+ IF( X( JX ).NE.ZERO )THEN
+ TEMP = ALPHA*DCONJG( X( JX ) )
+ IX = KX
+ DO 30, K = KK, KK + J - 2
+ AP( K ) = AP( K ) + X( IX )*TEMP
+ IX = IX + INCX
+ 30 CONTINUE
+ AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) )
+ $ + DBLE( X( JX )*TEMP )
+ ELSE
+ AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) )
+ END IF
+ JX = JX + INCX
+ KK = KK + J
+ 40 CONTINUE
+ END IF
+ ELSE
+*
+* Form A when lower triangle is stored in AP.
+*
+ IF( INCX.EQ.1 )THEN
+ DO 60, J = 1, N
+ IF( X( J ).NE.ZERO )THEN
+ TEMP = ALPHA*DCONJG( X( J ) )
+ AP( KK ) = DBLE( AP( KK ) ) + DBLE( TEMP*X( J ) )
+ K = KK + 1
+ DO 50, I = J + 1, N
+ AP( K ) = AP( K ) + X( I )*TEMP
+ K = K + 1
+ 50 CONTINUE
+ ELSE
+ AP( KK ) = DBLE( AP( KK ) )
+ END IF
+ KK = KK + N - J + 1
+ 60 CONTINUE
+ ELSE
+ JX = KX
+ DO 80, J = 1, N
+ IF( X( JX ).NE.ZERO )THEN
+ TEMP = ALPHA*DCONJG( X( JX ) )
+ AP( KK ) = DBLE( AP( KK ) ) + DBLE( TEMP*X( JX ) )
+ IX = JX
+ DO 70, K = KK + 1, KK + N - J
+ IX = IX + INCX
+ AP( K ) = AP( K ) + X( IX )*TEMP
+ 70 CONTINUE
+ ELSE
+ AP( KK ) = DBLE( AP( KK ) )
+ END IF
+ JX = JX + INCX
+ KK = KK + N - J + 1
+ 80 CONTINUE
+ END IF
+ END IF
+*
+ RETURN
+*
+* End of ZHPR .
+*
+ END