summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/blas/zher2.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/blas/zher2.f')
-rw-r--r--2.3-1/src/fortran/blas/zher2.f249
1 files changed, 249 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/blas/zher2.f b/2.3-1/src/fortran/blas/zher2.f
new file mode 100644
index 00000000..06acdff7
--- /dev/null
+++ b/2.3-1/src/fortran/blas/zher2.f
@@ -0,0 +1,249 @@
+ SUBROUTINE ZHER2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA )
+* .. Scalar Arguments ..
+ COMPLEX*16 ALPHA
+ INTEGER INCX, INCY, LDA, N
+ CHARACTER*1 UPLO
+* .. Array Arguments ..
+ COMPLEX*16 A( LDA, * ), X( * ), Y( * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZHER2 performs the hermitian rank 2 operation
+*
+* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
+*
+* where alpha is a scalar, x and y are n element vectors and A is an n
+* by n hermitian matrix.
+*
+* Parameters
+* ==========
+*
+* UPLO - CHARACTER*1.
+* On entry, UPLO specifies whether the upper or lower
+* triangular part of the array A is to be referenced as
+* follows:
+*
+* UPLO = 'U' or 'u' Only the upper triangular part of A
+* is to be referenced.
+*
+* UPLO = 'L' or 'l' Only the lower triangular part of A
+* is to be referenced.
+*
+* Unchanged on exit.
+*
+* N - INTEGER.
+* On entry, N specifies the order of the matrix A.
+* N must be at least zero.
+* Unchanged on exit.
+*
+* ALPHA - COMPLEX*16 .
+* On entry, ALPHA specifies the scalar alpha.
+* Unchanged on exit.
+*
+* X - COMPLEX*16 array of dimension at least
+* ( 1 + ( n - 1 )*abs( INCX ) ).
+* Before entry, the incremented array X must contain the n
+* element vector x.
+* Unchanged on exit.
+*
+* INCX - INTEGER.
+* On entry, INCX specifies the increment for the elements of
+* X. INCX must not be zero.
+* Unchanged on exit.
+*
+* Y - COMPLEX*16 array of dimension at least
+* ( 1 + ( n - 1 )*abs( INCY ) ).
+* Before entry, the incremented array Y must contain the n
+* element vector y.
+* Unchanged on exit.
+*
+* INCY - INTEGER.
+* On entry, INCY specifies the increment for the elements of
+* Y. INCY must not be zero.
+* Unchanged on exit.
+*
+* A - COMPLEX*16 array of DIMENSION ( LDA, n ).
+* Before entry with UPLO = 'U' or 'u', the leading n by n
+* upper triangular part of the array A must contain the upper
+* triangular part of the hermitian matrix and the strictly
+* lower triangular part of A is not referenced. On exit, the
+* upper triangular part of the array A is overwritten by the
+* upper triangular part of the updated matrix.
+* Before entry with UPLO = 'L' or 'l', the leading n by n
+* lower triangular part of the array A must contain the lower
+* triangular part of the hermitian matrix and the strictly
+* upper triangular part of A is not referenced. On exit, the
+* lower triangular part of the array A is overwritten by the
+* lower triangular part of the updated matrix.
+* Note that the imaginary parts of the diagonal elements need
+* not be set, they are assumed to be zero, and on exit they
+* are set to zero.
+*
+* LDA - INTEGER.
+* On entry, LDA specifies the first dimension of A as declared
+* in the calling (sub) program. LDA must be at least
+* max( 1, n ).
+* Unchanged on exit.
+*
+*
+* Level 2 Blas routine.
+*
+* -- Written on 22-October-1986.
+* Jack Dongarra, Argonne National Lab.
+* Jeremy Du Croz, Nag Central Office.
+* Sven Hammarling, Nag Central Office.
+* Richard Hanson, Sandia National Labs.
+*
+*
+* .. Parameters ..
+ COMPLEX*16 ZERO
+ PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
+* .. Local Scalars ..
+ COMPLEX*16 TEMP1, TEMP2
+ INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* .. External Subroutines ..
+ EXTERNAL XERBLA
+* .. Intrinsic Functions ..
+ INTRINSIC DCONJG, MAX, DBLE
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ IF ( .NOT.LSAME( UPLO, 'U' ).AND.
+ $ .NOT.LSAME( UPLO, 'L' ) )THEN
+ INFO = 1
+ ELSE IF( N.LT.0 )THEN
+ INFO = 2
+ ELSE IF( INCX.EQ.0 )THEN
+ INFO = 5
+ ELSE IF( INCY.EQ.0 )THEN
+ INFO = 7
+ ELSE IF( LDA.LT.MAX( 1, N ) )THEN
+ INFO = 9
+ END IF
+ IF( INFO.NE.0 )THEN
+ CALL XERBLA( 'ZHER2 ', INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible.
+*
+ IF( ( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) )
+ $ RETURN
+*
+* Set up the start points in X and Y if the increments are not both
+* unity.
+*
+ IF( ( INCX.NE.1 ).OR.( INCY.NE.1 ) )THEN
+ IF( INCX.GT.0 )THEN
+ KX = 1
+ ELSE
+ KX = 1 - ( N - 1 )*INCX
+ END IF
+ IF( INCY.GT.0 )THEN
+ KY = 1
+ ELSE
+ KY = 1 - ( N - 1 )*INCY
+ END IF
+ JX = KX
+ JY = KY
+ END IF
+*
+* Start the operations. In this version the elements of A are
+* accessed sequentially with one pass through the triangular part
+* of A.
+*
+ IF( LSAME( UPLO, 'U' ) )THEN
+*
+* Form A when A is stored in the upper triangle.
+*
+ IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
+ DO 20, J = 1, N
+ IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN
+ TEMP1 = ALPHA*DCONJG( Y( J ) )
+ TEMP2 = DCONJG( ALPHA*X( J ) )
+ DO 10, I = 1, J - 1
+ A( I, J ) = A( I, J ) + X( I )*TEMP1 + Y( I )*TEMP2
+ 10 CONTINUE
+ A( J, J ) = DBLE( A( J, J ) ) +
+ $ DBLE( X( J )*TEMP1 + Y( J )*TEMP2 )
+ ELSE
+ A( J, J ) = DBLE( A( J, J ) )
+ END IF
+ 20 CONTINUE
+ ELSE
+ DO 40, J = 1, N
+ IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN
+ TEMP1 = ALPHA*DCONJG( Y( JY ) )
+ TEMP2 = DCONJG( ALPHA*X( JX ) )
+ IX = KX
+ IY = KY
+ DO 30, I = 1, J - 1
+ A( I, J ) = A( I, J ) + X( IX )*TEMP1
+ $ + Y( IY )*TEMP2
+ IX = IX + INCX
+ IY = IY + INCY
+ 30 CONTINUE
+ A( J, J ) = DBLE( A( J, J ) ) +
+ $ DBLE( X( JX )*TEMP1 + Y( JY )*TEMP2 )
+ ELSE
+ A( J, J ) = DBLE( A( J, J ) )
+ END IF
+ JX = JX + INCX
+ JY = JY + INCY
+ 40 CONTINUE
+ END IF
+ ELSE
+*
+* Form A when A is stored in the lower triangle.
+*
+ IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
+ DO 60, J = 1, N
+ IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN
+ TEMP1 = ALPHA*DCONJG( Y( J ) )
+ TEMP2 = DCONJG( ALPHA*X( J ) )
+ A( J, J ) = DBLE( A( J, J ) ) +
+ $ DBLE( X( J )*TEMP1 + Y( J )*TEMP2 )
+ DO 50, I = J + 1, N
+ A( I, J ) = A( I, J ) + X( I )*TEMP1 + Y( I )*TEMP2
+ 50 CONTINUE
+ ELSE
+ A( J, J ) = DBLE( A( J, J ) )
+ END IF
+ 60 CONTINUE
+ ELSE
+ DO 80, J = 1, N
+ IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN
+ TEMP1 = ALPHA*DCONJG( Y( JY ) )
+ TEMP2 = DCONJG( ALPHA*X( JX ) )
+ A( J, J ) = DBLE( A( J, J ) ) +
+ $ DBLE( X( JX )*TEMP1 + Y( JY )*TEMP2 )
+ IX = JX
+ IY = JY
+ DO 70, I = J + 1, N
+ IX = IX + INCX
+ IY = IY + INCY
+ A( I, J ) = A( I, J ) + X( IX )*TEMP1
+ $ + Y( IY )*TEMP2
+ 70 CONTINUE
+ ELSE
+ A( J, J ) = DBLE( A( J, J ) )
+ END IF
+ JX = JX + INCX
+ JY = JY + INCY
+ 80 CONTINUE
+ END IF
+ END IF
+*
+ RETURN
+*
+* End of ZHER2 .
+*
+ END