summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/blas/dsymv.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/blas/dsymv.f')
-rw-r--r--2.3-1/src/fortran/blas/dsymv.f262
1 files changed, 262 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/blas/dsymv.f b/2.3-1/src/fortran/blas/dsymv.f
new file mode 100644
index 00000000..7592d156
--- /dev/null
+++ b/2.3-1/src/fortran/blas/dsymv.f
@@ -0,0 +1,262 @@
+ SUBROUTINE DSYMV ( UPLO, N, ALPHA, A, LDA, X, INCX,
+ $ BETA, Y, INCY )
+* .. Scalar Arguments ..
+ DOUBLE PRECISION ALPHA, BETA
+ INTEGER INCX, INCY, LDA, N
+ CHARACTER*1 UPLO
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), X( * ), Y( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DSYMV performs the matrix-vector operation
+*
+* y := alpha*A*x + beta*y,
+*
+* where alpha and beta are scalars, x and y are n element vectors and
+* A is an n by n symmetric matrix.
+*
+* Parameters
+* ==========
+*
+* UPLO - CHARACTER*1.
+* On entry, UPLO specifies whether the upper or lower
+* triangular part of the array A is to be referenced as
+* follows:
+*
+* UPLO = 'U' or 'u' Only the upper triangular part of A
+* is to be referenced.
+*
+* UPLO = 'L' or 'l' Only the lower triangular part of A
+* is to be referenced.
+*
+* Unchanged on exit.
+*
+* N - INTEGER.
+* On entry, N specifies the order of the matrix A.
+* N must be at least zero.
+* Unchanged on exit.
+*
+* ALPHA - DOUBLE PRECISION.
+* On entry, ALPHA specifies the scalar alpha.
+* Unchanged on exit.
+*
+* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
+* Before entry with UPLO = 'U' or 'u', the leading n by n
+* upper triangular part of the array A must contain the upper
+* triangular part of the symmetric matrix and the strictly
+* lower triangular part of A is not referenced.
+* Before entry with UPLO = 'L' or 'l', the leading n by n
+* lower triangular part of the array A must contain the lower
+* triangular part of the symmetric matrix and the strictly
+* upper triangular part of A is not referenced.
+* Unchanged on exit.
+*
+* LDA - INTEGER.
+* On entry, LDA specifies the first dimension of A as declared
+* in the calling (sub) program. LDA must be at least
+* max( 1, n ).
+* Unchanged on exit.
+*
+* X - DOUBLE PRECISION array of dimension at least
+* ( 1 + ( n - 1 )*abs( INCX ) ).
+* Before entry, the incremented array X must contain the n
+* element vector x.
+* Unchanged on exit.
+*
+* INCX - INTEGER.
+* On entry, INCX specifies the increment for the elements of
+* X. INCX must not be zero.
+* Unchanged on exit.
+*
+* BETA - DOUBLE PRECISION.
+* On entry, BETA specifies the scalar beta. When BETA is
+* supplied as zero then Y need not be set on input.
+* Unchanged on exit.
+*
+* Y - DOUBLE PRECISION array of dimension at least
+* ( 1 + ( n - 1 )*abs( INCY ) ).
+* Before entry, the incremented array Y must contain the n
+* element vector y. On exit, Y is overwritten by the updated
+* vector y.
+*
+* INCY - INTEGER.
+* On entry, INCY specifies the increment for the elements of
+* Y. INCY must not be zero.
+* Unchanged on exit.
+*
+*
+* Level 2 Blas routine.
+*
+* -- Written on 22-October-1986.
+* Jack Dongarra, Argonne National Lab.
+* Jeremy Du Croz, Nag Central Office.
+* Sven Hammarling, Nag Central Office.
+* Richard Hanson, Sandia National Labs.
+*
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE , ZERO
+ PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
+* .. Local Scalars ..
+ DOUBLE PRECISION TEMP1, TEMP2
+ INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* .. External Subroutines ..
+ EXTERNAL XERBLA
+* .. Intrinsic Functions ..
+ INTRINSIC MAX
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ IF ( .NOT.LSAME( UPLO, 'U' ).AND.
+ $ .NOT.LSAME( UPLO, 'L' ) )THEN
+ INFO = 1
+ ELSE IF( N.LT.0 )THEN
+ INFO = 2
+ ELSE IF( LDA.LT.MAX( 1, N ) )THEN
+ INFO = 5
+ ELSE IF( INCX.EQ.0 )THEN
+ INFO = 7
+ ELSE IF( INCY.EQ.0 )THEN
+ INFO = 10
+ END IF
+ IF( INFO.NE.0 )THEN
+ CALL XERBLA( 'DSYMV ', INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible.
+*
+ IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
+ $ RETURN
+*
+* Set up the start points in X and Y.
+*
+ IF( INCX.GT.0 )THEN
+ KX = 1
+ ELSE
+ KX = 1 - ( N - 1 )*INCX
+ END IF
+ IF( INCY.GT.0 )THEN
+ KY = 1
+ ELSE
+ KY = 1 - ( N - 1 )*INCY
+ END IF
+*
+* Start the operations. In this version the elements of A are
+* accessed sequentially with one pass through the triangular part
+* of A.
+*
+* First form y := beta*y.
+*
+ IF( BETA.NE.ONE )THEN
+ IF( INCY.EQ.1 )THEN
+ IF( BETA.EQ.ZERO )THEN
+ DO 10, I = 1, N
+ Y( I ) = ZERO
+ 10 CONTINUE
+ ELSE
+ DO 20, I = 1, N
+ Y( I ) = BETA*Y( I )
+ 20 CONTINUE
+ END IF
+ ELSE
+ IY = KY
+ IF( BETA.EQ.ZERO )THEN
+ DO 30, I = 1, N
+ Y( IY ) = ZERO
+ IY = IY + INCY
+ 30 CONTINUE
+ ELSE
+ DO 40, I = 1, N
+ Y( IY ) = BETA*Y( IY )
+ IY = IY + INCY
+ 40 CONTINUE
+ END IF
+ END IF
+ END IF
+ IF( ALPHA.EQ.ZERO )
+ $ RETURN
+ IF( LSAME( UPLO, 'U' ) )THEN
+*
+* Form y when A is stored in upper triangle.
+*
+ IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
+ DO 60, J = 1, N
+ TEMP1 = ALPHA*X( J )
+ TEMP2 = ZERO
+ DO 50, I = 1, J - 1
+ Y( I ) = Y( I ) + TEMP1*A( I, J )
+ TEMP2 = TEMP2 + A( I, J )*X( I )
+ 50 CONTINUE
+ Y( J ) = Y( J ) + TEMP1*A( J, J ) + ALPHA*TEMP2
+ 60 CONTINUE
+ ELSE
+ JX = KX
+ JY = KY
+ DO 80, J = 1, N
+ TEMP1 = ALPHA*X( JX )
+ TEMP2 = ZERO
+ IX = KX
+ IY = KY
+ DO 70, I = 1, J - 1
+ Y( IY ) = Y( IY ) + TEMP1*A( I, J )
+ TEMP2 = TEMP2 + A( I, J )*X( IX )
+ IX = IX + INCX
+ IY = IY + INCY
+ 70 CONTINUE
+ Y( JY ) = Y( JY ) + TEMP1*A( J, J ) + ALPHA*TEMP2
+ JX = JX + INCX
+ JY = JY + INCY
+ 80 CONTINUE
+ END IF
+ ELSE
+*
+* Form y when A is stored in lower triangle.
+*
+ IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
+ DO 100, J = 1, N
+ TEMP1 = ALPHA*X( J )
+ TEMP2 = ZERO
+ Y( J ) = Y( J ) + TEMP1*A( J, J )
+ DO 90, I = J + 1, N
+ Y( I ) = Y( I ) + TEMP1*A( I, J )
+ TEMP2 = TEMP2 + A( I, J )*X( I )
+ 90 CONTINUE
+ Y( J ) = Y( J ) + ALPHA*TEMP2
+ 100 CONTINUE
+ ELSE
+ JX = KX
+ JY = KY
+ DO 120, J = 1, N
+ TEMP1 = ALPHA*X( JX )
+ TEMP2 = ZERO
+ Y( JY ) = Y( JY ) + TEMP1*A( J, J )
+ IX = JX
+ IY = JY
+ DO 110, I = J + 1, N
+ IX = IX + INCX
+ IY = IY + INCY
+ Y( IY ) = Y( IY ) + TEMP1*A( I, J )
+ TEMP2 = TEMP2 + A( I, J )*X( IX )
+ 110 CONTINUE
+ Y( JY ) = Y( JY ) + ALPHA*TEMP2
+ JX = JX + INCX
+ JY = JY + INCY
+ 120 CONTINUE
+ END IF
+ END IF
+*
+ RETURN
+*
+* End of DSYMV .
+*
+ END