summaryrefslogtreecommitdiff
path: root/2.3-1/src/c/signalProcessing/fft/dfftmx.c
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/c/signalProcessing/fft/dfftmx.c')
-rw-r--r--2.3-1/src/c/signalProcessing/fft/dfftmx.c1211
1 files changed, 1211 insertions, 0 deletions
diff --git a/2.3-1/src/c/signalProcessing/fft/dfftmx.c b/2.3-1/src/c/signalProcessing/fft/dfftmx.c
new file mode 100644
index 00000000..f7d6ce30
--- /dev/null
+++ b/2.3-1/src/c/signalProcessing/fft/dfftmx.c
@@ -0,0 +1,1211 @@
+/*
+ * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
+ * Copyright (C) 2008-2008 - INRIA - Allan SIMON
+ *
+ * This file must be used under the terms of the CeCILL.
+ * This source file is licensed as described in the file COPYING, which
+ * you should have received as part of this distribution. The terms
+ * are also available at
+ * http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
+ *
+ */
+
+#include <stdlib.h>
+#include <math.h>
+#include "max.h"
+#include "min.h"
+#include "fft_internal.h"
+
+
+/*c'est moche je sais */
+
+static double* a ;
+static double* b ;
+static int ntot ;
+static int n ;
+static int nspan ;
+static int isn ;
+static int m ;
+static int kt ;
+static double* wt ;
+static double* ck ;
+static double* bt ;
+static double* sk ;
+static int* np ;
+static int* nfac ;
+static int inc ;
+static int nt ;
+static int ks ;
+
+static double rad ;
+static double c72 ;
+static double s72 ;
+static double s120 ;
+
+static double aa ;
+static double ak ;
+static double akm ;
+static double akp ;
+static double aj ;
+static double ajp ;
+static double ajm ;
+
+static double bb ;
+static double bk ;
+static double bkm ;
+static double bkp ;
+static double bj ;
+static double bjp ;
+static double bjm ;
+static double dr ;
+
+static double cd ;
+static double c1 ;
+static double c2 ;
+static double c3 ;
+
+static double sd ;
+static double s1 ;
+static double s2 ;
+static double s3 ;
+
+static int kspan ;
+static int nn ;
+static int jc ;
+static int klim ;
+static int jf ;
+static int maxf ;
+static int kk ;
+static int k ;
+static int k1 ;
+static int k2 ;
+static int k3 ;
+static int k4 ;
+static int mm ;
+static int kspnn ;
+static int i ;
+static int j ;
+static int jj;
+
+/* Prototypes */
+
+static void preliminaryWork (void);
+static void permute_stage1 (void);
+static void permute_stage2 (void);
+static void f4t_150 (void);
+static void factorOf3Transform (void) ;
+static void factorOf5Transform (void) ;
+static void preFOtherTransform (void);
+static void factorOfOtherTransform (void);
+static void pre_sqFactor2NormlOrder (void);
+static void nonSqFactor2NormOrder (void) ;
+static void detPermutCycles (void);
+static void reorderMatrix (void ) ;
+
+static int f4t_170 (void);
+static int factorTransform (void);
+static int pre_fOf2Trans (void);
+static int factorOf2Transform (void);
+static int factorOf4Transform (void);
+static int mulByRotationFactor (void );
+static int post_sqFactor2NormlOrder (void);
+static void single_sqFactor2NormlOrder (void);
+static int multi_sqFactor2NormlOrder (void);
+
+/* End Prototypes */
+
+/*note on this code all numbers alone in comment is
+ a reference to the corresponding goto in the original fotran code */
+
+int dfftmx ( double* _pdblA , double* _pdblB , int _iNtot, int _iN, int _iNspan,
+ int _iIsn, int _iM, int _iKt, double* _pdblWt, double* _pdblCk,
+ double* _pdblBt, double* _pdblSk, int* _piNp, int* _piNfac)
+{
+ int retVal = 0 ;
+ a = _pdblA ;
+ b = _pdblB ;
+
+ ntot = _iNtot ;
+ n = _iN ;
+ nspan= _iNspan ;
+ isn = _iIsn;
+ m = _iM ;
+ kt = _iKt ;
+ wt = _pdblWt ;
+ ck = _pdblCk;
+ bt = _pdblBt;
+ sk = _pdblSk;
+ np = _piNp;
+ nfac = _piNfac;
+
+ inc = abs ( isn ) ;
+ nt = inc*ntot ;
+ ks = inc*nspan;
+ rad = atan((double)1);
+ c72 = cos (rad/0.6250);
+ s72 = sin (rad/0.6250);
+ s120= sqrt(0.750);
+
+
+
+ preliminaryWork() ;
+
+
+ while ( retVal == 0 ) retVal = factorTransform ( ) ;
+
+ np[0] = ks ;
+
+ if ( kt != 0) permute_stage1 ( ) ;
+
+
+ if ( 2*kt + 1 < m ) permute_stage2 ( ) ;
+
+ _pdblA = a ;
+ _pdblB = b ;
+
+ return 0 ;
+}
+
+/** **************************************
+Sous-Fonctions
+******************************************/
+
+
+
+/* this function only set the value of variable */
+static void preliminaryWork (void)
+{
+ s72 = -s72 ;
+ s120= -s120;
+ rad = -rad ;
+
+ kspan = ks ;
+ nn = nt -inc ;
+ jc = ks/n ;
+
+ /* sin , cos values are re-initialized each lim steps */
+
+ klim = 32*jc ;
+ i = 0;
+ jf = 0 ;
+
+ if ( kt > 0 ) maxf = max ( nfac[kt-1] , nfac[m-kt-1] );
+ else maxf = nfac[m-kt-1] ;
+
+}
+
+
+
+/*40*/
+/* this function is call as many time as dfftbi has determined factor for the size of the input vector
+ each time we call a transform function for each kind of factor , we begin by the smallest
+ factor are stored in nfac
+ */
+
+static int factorTransform (void)
+{
+
+ int retVal = 42;
+
+ dr = 8 * (double)jc/(double)kspan ;
+ cd = 2 * sin(0.5*dr*rad)*sin(0.5*dr*rad);
+ sd = sin(dr*rad) ;
+ kk = 1 ;
+ i++ ;
+
+
+
+
+switch ( nfac[i-1] )
+ {
+ case 2 :
+ /*transform for factor of 2 (including rotation factor)*/
+
+ retVal = pre_fOf2Trans() ;
+ if ( retVal == 0 ) factorOf2Transform () ;
+
+ break ;
+
+ case 4 :
+
+ kspnn = kspan ;
+ kspan = kspan >> 2 ; /*kspan /= 4 */
+
+ retVal = factorOf4Transform () ;
+ break ;
+
+ case 3 :
+
+ k = nfac[i-1] ;
+ kspnn = kspan ;
+ kspan = kspan / k ;
+
+ factorOf3Transform ( ) ;
+ break ;
+
+ case 5 :
+
+ k = nfac[i-1] ;
+ kspnn = kspan ;
+ kspan = kspan / k ;
+
+ factorOf5Transform ( ) ;
+ break ;
+
+ default :
+
+ k = nfac[i-1] ;
+ kspnn = kspan ;
+ kspan = kspan / k ;
+
+ if ( nfac[i-1] != jf) preFOtherTransform ( ) ;
+
+ factorOfOtherTransform ( ) ;
+ break ;
+ }
+
+
+
+ if ( retVal == 42 )
+ {
+ if ( i != m) retVal = mulByRotationFactor ( ) ;
+ else retVal = 1 ;
+ }
+
+ if ( retVal == 1 ) return 1 ; /*goto permute */
+ else return 0 ; /*goto factor_transform => once again*/
+
+}
+
+/* permutation for square factor of n */
+static void permute_stage1 (void)
+{
+
+ int retVal = 1 ;
+
+ pre_sqFactor2NormlOrder () ;
+
+ if ( n == ntot )
+ /*permutation for single-variate transform (optional code)*/
+ while ( retVal == 1)
+ {
+ single_sqFactor2NormlOrder () ;
+ retVal = post_sqFactor2NormlOrder () ;
+ }
+ else
+ /*permutation for multivariate transform*/
+ while ( retVal == 1) retVal = multi_sqFactor2NormlOrder ();
+
+}
+
+static void permute_stage2 (void)
+{
+ kspnn = np[kt] ;
+
+ /*permutation for square-free facotrs of n */
+ nonSqFactor2NormOrder () ;
+
+ /*determine the permutation cycles of length greater than 1*/
+ detPermutCycles ();
+
+ j = k3 + 1;
+ nt -= kspnn ;
+ i = nt - inc + 1 ;
+ while ( nt >= 0 )
+ {
+ reorderMatrix ( ) ;
+
+ j = k3 + 1 ;
+ nt -= kspnn ;
+ i = nt - inc + 1 ;
+ }
+}
+
+/*****************************************
+Sous-Sous-Fonctions
+******************************************/
+
+
+
+
+
+static int pre_fOf2Trans (void)
+{
+ kspan /= 2;
+ k1 = kspan + 2 ;
+ /*50*/
+ do{
+ do{
+ k2 = kk + kspan ;
+ ak = a[k2-1] ;
+ bk = b[k2-1] ;
+
+ a[k2-1] = a[kk-1] - ak;
+ b[k2-1] = b[kk-1] - bk;
+
+ a[kk-1] = a[kk-1] + ak;
+ b[kk-1] = b[kk-1] + bk;
+
+ kk = k2 + kspan ;
+ }while (kk <= nn);
+
+ kk -= nn ;
+ }while (kk <= jc);
+
+
+ if ( kk > kspan ) return 1 ; /*goto350*/
+ else return 0 ; /*goto60*/
+
+
+}
+
+
+
+static int factorOf2Transform (void)
+{
+ do /*60*/ {/*while ( kk <= jc*2 )*/
+ c1 = 1 - cd ;
+ s1 = sd ;
+ mm = min( k1/2 , klim);
+
+ do/* do 80 */ {/*while ( kk <= mm || ( kk > mm && kk < k2 ))*/
+ do {/*while(kk > k2) */
+ do { /*while ( kk < nt )*/
+ k2 = kk + kspan;
+
+ ak = a[kk-1] - a[k2-1];
+ bk = b[kk-1] - b[k2-1];
+
+ a[kk-1] = a[kk-1] + a[k2-1];
+ b[kk-1] = b[kk-1] + b[k2-1];
+
+ a[k2-1] = c1*ak - s1*bk;
+ b[k2-1] = s1*ak + c1*bk;
+
+ kk = k2 + kspan;
+ }while ( kk < nt );
+
+ k2 = kk - nt;
+ c1 = -c1;
+ kk = k1 - k2;
+
+
+ }while (kk > k2);
+
+ kk += jc;
+
+ if ( kk <= mm ) /* 70 */
+ {
+ ak = c1 - ( cd*c1+sd*s1) ;
+ s1 += (sd*c1-cd*s1) ;
+ /*c the following three statements compensate for truncation
+ c error. if rounded arithmetic is used, substitute
+ c c1=ak*/
+ c1 = 0.5/(ak*ak+s1*s1) + 0.5 ;
+ s1 *= c1 ;
+ c1 *= ak ;
+ }
+ else {
+ if ( kk < k2 ) /*90*/ {
+ s1 = dr*rad*((double)(kk-1)/(double)jc);
+ c1 = cos(s1) ;
+ s1 = sin(s1) ;
+ mm = min(k1/2,mm+klim);
+ }
+ }
+
+ } while ( kk <= mm || ( kk > mm && kk < k2 ));
+
+ k1 += (inc+inc) ;
+ kk = (k1-kspan)/2 + jc;
+
+ } while ( kk <= jc*2 );
+
+
+ return 0 ; /*goto40*/
+}
+
+
+/* this one is just an optimisation of the factor of 2 transform , we compute more things each turn */
+
+static int factorOf4Transform (void)
+{
+ int return_value = 0 ;
+
+ /*120*/
+ do
+ {
+ c1 = 1 ;
+ s1 = 0 ;
+
+ mm = min ( kspan , klim ) ;
+
+ do
+ {
+ f4t_150 () ;
+ return_value = f4t_170 () ;
+ } while ( return_value == 0 );
+
+ kk += ( inc - kspan ) ;
+ } while ( kk <= jc ) ;
+
+
+
+ if ( kspan == jc )
+ return 1 ; /*goto350*/
+ else
+ return 0 ;/*goto40*/
+
+
+}
+
+/*this function and the following are just here for conveniance , they just do fourier transformation for factor of 4
+ but as the code was a bit long in factorof4transform , we've created two sub-functions */
+
+static void f4t_150 (void)
+{
+
+ do{
+ k1 = kk + kspan ;
+ k2 = k1 + kspan ;
+ k3 = k2 + kspan ;
+
+ akp = a[kk-1] + a[k2-1] ;
+ akm = a[kk-1] - a[k2-1] ;
+
+ ajp = a[k1-1] + a[k3-1] ;
+ ajm = a[k1-1] - a[k3-1] ;
+
+ a[kk-1] = akp + ajp ;
+ ajp = akp - ajp ;
+
+ bkp = b[kk-1] + b[k2-1] ;
+ bkm = b[kk-1] - b[k2-1] ;
+
+ bjp = b[k1-1] + b[k3-1] ;
+ bjm = b[k1-1] - b[k3-1] ;
+
+ b[kk-1] = bkp + bjp ;
+ bjp = bkp - bjp ;
+
+ akp = akm + bjm ;
+ akm = akm - bjm ;
+
+ bkp = bkm - ajm ;
+ bkm = bkm + ajm ;
+
+ if ( s1 == 0 )/*190*/
+ {
+ a[k1-1] = akp ;
+ a[k2-1] = ajp ;
+ a[k3-1] = akm ;
+
+ b[k1-1] = bkp ;
+ b[k2-1] = bjp ;
+ b[k3-1] = bkm ;
+
+
+ }
+ else /*160*/
+ {
+
+ a[k1-1] = akp*c1 - bkp*s1 ;
+ a[k2-1] = ajp*c2 - bjp*s2 ;
+ a[k3-1] = akm*c3 - bkm*s3 ;
+
+ a[k1-1] = bkp*c1 + akp*s1 ;
+ a[k2-1] = bjp*c2 + ajp*s2 ;
+ a[k3-1] = bkm*c3 + akm*s3 ;
+ }
+ kk=k3+kspan;
+ }while ( kk <= nt ) ;
+
+
+}
+
+static int f4t_170 (void)
+{
+ kk += ( jc - nt ) ;
+
+ if ( kk <= mm )
+ {
+ c2 = c1 - (cd*c1 + sd*s1);
+ s1 = s1 + (sd*c1 - cd*s1);
+
+ /*
+ the following three statements compensate for truncation
+ error. if rounded arithmetic is used, substitute
+ c1=c2
+ */
+
+ c1 = 0.5/(c2*c2+s1*s1) + 0.5 ;
+ s1 *= c1 ;
+ c1 *= c2 ;
+
+ /*140*/
+
+ c2 = c1*c1 - s1*s1 ;
+ s2 = c1*s1*2 ;
+ c3 = c2*c1 - s2*s1 ;
+ s3 = c2*s1 + s2*c1 ;
+
+
+ return 0 ;
+
+ }
+ else
+ {
+ if ( kk <= kspan )
+ {
+ s1 = dr*rad * (kk-1)/jc ;
+ c1 = cos (s1) ;
+ s1 = sin (s1) ;
+ mm = min ( kspan , mm + klim );
+
+ /*140*/
+
+ c2 = c1*c1 - s1*s1 ;
+ s2 = c1*s1*2 ;
+ c3 = c2*c1 - s2*s1 ;
+ s3 = c2*s1 + s2*c1 ;
+
+ return 0 ;
+ }
+ }
+
+ return 1 ;
+}
+
+
+
+
+static void factorOf3Transform (void)
+{
+ do{
+ do{
+ k1 = kk + kspan ;
+ k2 = k1 + kspan ;
+
+ ak = a[kk-1] ;
+ bk = b[kk-1] ;
+
+ aj = a[k1-1] + a[k2-1] ;
+ bj = b[k1-1] + b[k2-1] ;
+
+ a[kk-1] = ak + aj ;
+ b[kk-1] = bk + bj ;
+
+ ak = -0.5*aj + ak ;
+ bk = -0.5*bj + bk ;
+
+ aj = (a[k1-1] - a[k2-1])*s120 ;
+ bj = (b[k1-1] - b[k2-1])*s120 ;
+
+ a[k1-1] = ak - bj ;
+ b[k1-1] = bk + aj ;
+ a[k2-1] = ak + bj ;
+ b[k2-1] = bk - aj ;
+
+ kk = k2 + kspan ;
+ } while (kk < nn);
+
+ kk -= nn ;
+ }while (kk <= kspan);
+
+}
+
+static void factorOf5Transform (void)
+{
+ c2 = c72*c72 - s72 *s72 ;
+ s2 = 2 * c72*s72;
+
+ do{
+ do{
+ k1 = kk + kspan ;
+ k2 = k1 + kspan ;
+ k3 = k2 + kspan ;
+ k4 = k3 + kspan ;
+
+
+
+ akp = a[k1-1] + a[k4-1] ;
+ akm = a[k1-1] - a[k4-1] ;
+
+ bkp = b[k1-1] + b[k4-1] ;
+ bkm = b[k1-1] - b[k4-1] ;
+
+ ajp = a[k2-1] + a[k3-1] ;
+ ajm = a[k2-1] - a[k3-1] ;
+
+ bjp = b[k2-1] + b[k3-1] ;
+ bjm = b[k2-1] - b[k3-1] ;
+
+ aa = a[kk-1] ;
+ bb = b[kk-1] ;
+
+ a[kk-1] = aa + akp + ajp;
+ b[kk-1] = bb + bkp + bjp;
+
+ ak = akp*c72 + ajp*c2 + aa ;
+ bk = bkp*c72 + bjp*c2 + bb ;
+
+ aj = akm*s72 + ajm*s2 ;
+ bj = bkm*s72 + bjm*s2 ;
+
+ a[k1-1] = ak - bj ;
+ a[k4-1] = ak + bj ;
+ b[k1-1] = bk + aj ;
+ b[k4-1] = bk - aj ;
+
+ ak = akp*c2 + ajp*c72 + aa ;
+ bk = bkp*c2 + bjp*c72 + bb ;
+
+ aj = akm*s2 - ajm*s72 ;
+
+ bj = bkm*s2 - bjm*s72 ;
+
+ a[k2-1] = ak - bj ;
+ a[k3-1] = ak + bj ;
+ b[k2-1] = bk + aj ;
+ b[k3-1] = bk - aj ;
+
+ kk = k4 + kspan;
+ }while (kk < nn);
+
+ kk -= nn ;
+ }while (kk <= kspan);
+}
+
+/* this function is the general case of non factor of 2 factor , the factorof3transform and factorof5trandform are just
+special case of this one */
+
+
+static void preFOtherTransform (void)
+{
+
+ jf = k ;
+ s1 = (rad*8)/k ;
+ c1 = cos (s1) ;
+ s1 = sin (s1) ;
+ ck[jf-1] = 1 ;
+ sk[jf-1] = 0 ;
+ j = 1 ;
+
+ do
+ {
+ ck[j-1] = ck[k-1] * c1 + sk[k-1]*s1 ;
+ sk[j-1] = ck[k-1] * s1 - sk[k-1]*c1 ;
+
+ k -- ;
+
+ ck[k-1] = ck[j-1] ;
+ sk[k-1] = - sk[j-1] ;
+
+ j++ ;
+
+ }while ( j < k );
+
+}
+
+static void factorOfOtherTransform (void)
+{
+int ktemp = 0 ;
+
+do
+ {
+ k1 = kk ;
+ k2 = kk + kspnn ;
+
+ aa = a[kk-1] ;
+ bb = b[kk-1] ;
+
+ ak = aa ;
+ bk = bb ;
+ j = 1 ;
+ k1 += kspan ;
+
+ do
+ {
+ k2 -= kspan ;
+ j++ ;
+
+ wt[j-1] = a[k1-1] + a[k2-1] ;
+ ak = wt[j-1] + ak ;
+
+ bt[j-1] = b[k1-1] + b[k2-1] ;
+ bk = bt[j-1] + bk ;
+ j++ ;
+
+ wt[j-1] = a[k1-1] - a[k2-1] ;
+ bt[j-1] = b[k1-1] - b[k2-1] ;
+
+ k1 += kspan;
+ }while ( k1 < k2 ) ;
+
+ a[kk-1] = ak ;
+ b[kk-1] = bk ;
+
+ k1 = kk ;
+ k2 = kk + kspnn ;
+ j = 1 ;
+
+ do
+ {
+ k1 += kspan ;
+ k2 -= kspan ;
+ jj = j ;
+ ak = aa ;
+ bk = bb ;
+ aj = 0 ;
+ bj = 0 ;
+ k = 1 ;
+
+ do
+ {
+ k++ ;
+ ak += ( wt[k-1] * ck[jj-1] ) ;
+ bk += ( bt[k-1] * ck[jj-1] ) ;
+
+ k++ ;
+ aj += (wt[k-1] * sk[jj-1]) ;
+ bj += (bt[k-1] * sk[jj-1]) ;
+ jj += j ;
+
+ if ( jj > jf )
+ jj -= jf ;
+ } while ( k < jf ) ;
+
+ k = jf - j ;
+ a[k1-1] = ak - bj ;
+ b[k1-1] = bk + aj ;
+ a[k2-1] = ak + bj ;
+ b[k2-1] = bk - aj ;
+
+ j++ ;
+
+ }while ( j < k ) ;
+
+
+
+
+
+ kk += kspnn ;
+ ktemp = kk ;
+
+ if ( kk > nn )
+ {
+ kk -= nn;
+ }
+
+}while ( ktemp <= nn || (kk <= kspan && ( ktemp > nn)) );
+}
+
+
+
+
+static int mulByRotationFactor (void )
+{
+ int ktemp = 0 ;
+
+ if ( i != m )
+ {
+ kk = jc + 1 ;
+
+ /*300*/
+ do
+ {
+ c2 = 1 - cd ;
+ s1 = sd ;
+
+ mm = min ( kspan , klim ) ;
+
+ /*320 */
+ do
+ {
+
+ c1 = c2 ;
+ s2 = s1 ;
+ kk += kspan ;
+
+ do
+ {
+
+ ak = a[kk-1] ;
+ a[kk-1] = c2*ak - s2*b[kk-1] ;
+ b[kk-1] = s2*ak + c2*b[kk-1] ;
+
+ kk += kspnn ;
+ ktemp = kk ;
+
+
+ if ( kk > nt )
+ {
+ ak = s1*s2 ;
+ s2 = s1*c2 + s2*c1 ;
+ c2 = c1*c2 - ak ;
+ kk += (kspan - nt ) ;
+
+
+
+ }
+
+ }while (ktemp <= nt || ( kk <= kspnn && ktemp > nt )) ;
+
+ kk += ( jc - kspnn );
+
+
+ if ( kk <= mm )
+ {
+
+ /* 310*/
+ c2 = c1 - ( cd*c1 + sd*s1 ) ;
+ s1 += (sd*c1 - cd*s1 ) ;
+
+ /*
+ the following three statements compensate for truncation
+ error. if rounded arithmetic is used, substitute
+ c1=c2
+ */
+
+ c1 = 0.5/(c2*c2+s1*s1) + 0.5 ;
+ s1 *= c1 ;
+ c2 *= c1 ;
+ }
+ else
+ {
+ if ( kk <= kspan )
+ {
+
+ s1 = dr*rad * (kk-1)/jc ;
+ c2 = cos (s1) ;
+ s1 = sin (s1) ;
+ mm = min ( kspan , mm + klim );
+ }
+ }
+
+ }while ( kk <= mm ||( kk <= kspan && kk > mm ) ) ;
+
+ kk += (jc + inc -kspan );
+
+
+ }while ( kk <= jc+jc);
+
+
+ return 0 ; /* goto40 */
+ }
+
+ return 1 ; /* goto350*/
+}
+
+
+
+
+static void pre_sqFactor2NormlOrder (void)
+{
+
+ k = kt + kt + 1 ;
+
+ if ( m < k )
+ k -- ;
+
+ j = 1 ;
+ np[k] = jc ;
+
+ do
+ {
+ np[j] = np[j-1]/nfac[j-1] ;
+ np[k-1] = np[k]*nfac[j-1] ;
+
+ j++ ;
+ k-- ;
+ }while ( j < k ) ;
+
+ k3 = np[k] ;
+ kspan = np[1] ;
+ kk = jc + 1 ;
+ k2 = kspan + 1 ;
+ j = 1;
+
+
+}
+
+static int post_sqFactor2NormlOrder (void)
+{
+
+ do
+ {
+ do
+ {
+ k2 -= np[j-1] ;
+ j++ ;
+ k2 += np[j] ;
+
+ } while ( k2 > np[j-1]);
+
+ j = 1 ;
+
+/* 390 */
+ do
+ {
+ if ( kk < k2 )
+ {
+
+
+ return 1 ;
+ }
+ else
+ {
+ kk += inc ;
+ k2 += kspan ;
+ }
+ }while( k2 < ks );
+
+ }while ( kk < ks ) ;
+
+ jc = k3 ;
+
+ return 0;
+}
+
+
+/* appeler cetter fonction dans un do while valeur_retour != 1)*/
+static void single_sqFactor2NormlOrder (void)
+{
+
+
+ do
+ {
+
+ ak = a[kk-1] ;
+ a[kk-1] = a[k2-1] ;
+ a[k2-1] = ak ;
+
+ bk = b[kk-1] ;
+ b[kk-1] = b[k2-1] ;
+ b[k2-1] = bk ;
+
+ kk += inc ;
+ k2 += kspan ;
+ } while ( k2 < ks );
+
+ /*380*/
+}
+
+/*idem que single_ */
+static int multi_sqFactor2NormlOrder (void)
+{
+
+
+
+ k = kk + jc ;
+
+ do /*410*/
+ {
+ ak = a[kk-1] ;
+ a[kk-1] = a[k2-1] ;
+ a[k2-1] = ak ;
+ bk = b[kk-1] ;
+ b[kk-1] = b[k2-1] ;
+ b[k2-1] = bk ;
+ kk += inc ;
+ k2 += kspan ;
+ } while ( kk < k );
+
+ kk += (ks - jc ) ;
+ k2 += (ks - jc ) ;
+
+ if ( kk < nt )
+ return 1 ;
+
+ k2 += ( kspan - nt );
+ kk += ( jc - nt );
+
+ if ( k2 < ks )
+ {
+
+ return 1 ;
+ }
+ if( post_sqFactor2NormlOrder ( ) == 1 )
+ {
+
+ return 1 ;
+ }
+ jc = k3 ;
+
+ return 0;
+
+}
+
+
+
+static void nonSqFactor2NormOrder (void)
+{
+
+ j = m - kt ;
+ nfac[j] = 1 ;
+
+
+
+ do
+ {
+ nfac[j-1] *= nfac[j] ;
+
+ j-- ;
+
+
+ }while ( j != kt ) ;
+
+ kt ++ ;
+ nn = nfac[kt-1] - 1;
+
+ jj = 0 ;
+ j = 0;
+
+ /*480*/
+
+ k2 = nfac[kt-1] ;
+ k = kt + 1 ;
+ kk = nfac[k-1] ;
+ j ++ ;
+
+ while ( j <= nn )
+ {
+ jj += kk ;
+
+
+ while ( jj >= k2 )
+ {
+ jj -= k2 ;
+ k2 = kk ;
+ k++ ;
+ kk = nfac[k-1] ;
+
+ jj += kk ;
+
+
+ }
+
+ np[j-1] = jj ;
+ k2 = nfac[kt-1] ;
+ k = kt + 1 ;
+ kk = nfac[k-1] ;
+ j ++ ;
+
+ }
+
+ j = 0 ;
+
+ return ;
+}
+
+/* here we determine how many permutation cycles we need to do */
+static void detPermutCycles (void)
+{
+
+ do
+ {
+ do
+ {
+ j++ ;
+
+ kk = np[j-1] ;
+ }while ( kk < 0 ) ;
+
+
+ if ( kk != j )
+ {
+ do
+ {
+
+ k = kk ;
+ kk = np[k-1] ;
+ np[k-1] = -kk ;
+ }while ( kk != j ) ;
+ k3 = kk ;
+ }
+ else
+ np[j-1] = -j ;
+ }while ( j != nn );
+
+ maxf *= inc ;
+
+ return ;
+}
+
+static void reorderMatrix (void)
+{
+do
+ {
+ do
+ {
+ j-- ;
+
+ }while (np[j-1] < 0 ) ;
+
+ jj = jc ;
+
+ /*520*/
+ do
+ {
+ kspan = jj ;
+
+ if ( jj > maxf )
+ kspan = maxf ;
+
+ jj -= kspan ;
+ k = np [j-1];
+ kk = jc*k + i + jj ;
+ k1 = kk + kspan ;
+ k2 = 0 ;
+
+ do /*530*/
+ {
+ k2 ++ ;
+ wt[k2-1] = a[k1-1] ;
+ bt[k2-1] = b[k1-1] ;
+ k1 -= inc ;
+
+ }while ( k1 != kk );
+
+ do
+ {
+ k1 = kk + kspan ;
+ k2 = k1 - jc * (k + np[k-1]);
+ k = -np[k-1];
+
+
+ do
+ {
+ a[k1-1] = a[k2-1] ;
+ b[k1-1] = b[k2-1] ;
+
+ k1 -= inc ;
+ k2 -= inc ;
+
+ }while ( k1 != kk ) ;
+
+ kk = k2 ;
+
+ }while ( k != j );
+
+ k1 = kk +kspan ;
+ k2 = 0 ;
+ /*560*/
+
+ do
+ {
+ k2 ++ ;
+ a[k1-1] = wt[k2-1] ;
+ b[k1-1] = bt[k2-1] ;
+ k1 -= inc ;
+
+
+ }while ( k1 != kk ) ;
+
+ } while ( jj != 0 ) ;
+}while ( j != 1 ) ;
+
+ return ;
+}
+
+