diff options
Diffstat (limited to '2.3-1/src/c/signalProcessing/fft/dfftbi.c')
-rw-r--r-- | 2.3-1/src/c/signalProcessing/fft/dfftbi.c | 322 |
1 files changed, 322 insertions, 0 deletions
diff --git a/2.3-1/src/c/signalProcessing/fft/dfftbi.c b/2.3-1/src/c/signalProcessing/fft/dfftbi.c new file mode 100644 index 00000000..8ddef44f --- /dev/null +++ b/2.3-1/src/c/signalProcessing/fft/dfftbi.c @@ -0,0 +1,322 @@ +/* + * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab + * Copyright (C) 2008-2008 - INRIA - Allan SIMON + * + * This file must be used under the terms of the CeCILL. + * This source file is licensed as described in the file COPYING, which + * you should have received as part of this distribution. The terms + * are also available at + * http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt + * + */ + +#include <stdlib.h> +#include <stdio.h> +#include "max.h" +#include "fft_internal.h" + +/* +c arrays a and b originally hold the real and imaginary +c components of the data, and return the real and +c imaginary components of the resulting fourier coefficients. +c multivariate data is indexed according to the fortran +c array element successor function, without limit +c on the number of implied multiple subscripts. +c the subroutine is called once for each variate. +c the calls for a multivariate transform may be in any order. +c +c n is the dimension of the current variable. +c nspn is the spacing of consecutive data values +c while indexing the current variable. +c nseg*n*nspn is the total number of complex data values. +c the sign of isn determines the sign of the complex +c exponential, and the magnitude of isn is normally one. +c the magnitude of isn determines the indexing increment for a&b. +c +c if fft is called twice, with opposite signs on isn, an +c identity transformation is done...calls can be in either order. +c the results are scaled by 1/n when the sign of isn is positive. +c +c a tri-variate transform with a(n1,n2,n3), b(n1,n2,n3) +c is computed by +c call fft(a,b,n2*n3,n1,1,-1) +c call fft(a,b,n3,n2,n1,-1) +c call fft(a,b,1,n3,n1*n2,-1) +c +c a single-variate transform of n complex data values is computed by +c call fft(a,b,1,n,1,-1) +c +c the data may alternatively be stored in a single complex +c array a, then the magnitude of isn changed to two to +c give the correct indexing increment and a(2) used to +c pass the initial address for the sequence of imaginary +c values, e.g. +c +c +c array nfac is working storage for factoring n. the smallest +c number exceeding the 15 locations provided is 12,754,584. +c! +*/ +void dfftbi ( double* a , double* b , int nseg , int n , int nspn , + int isn , int ierr) +{ + + double* rstak ; + int* istak ; + + int lout = 0 ; + int lnow = 10; + int lused= 10; + + int lbook = 10 ; + + + int nfac[15] ; + int i ; + int in ; + int j = 3 ; + int j2 = 3 ; + int j3 = 3 ; + int jj = 9; + int m = 0 ; + int k ; + int kt ; + int kkk ; + int nspan ; + int nitems ; + int ntot ; + int maxp = 0; + int maxf ; + int itype; + int istkgt ; + + + int nf = abs ( n ) ; + + ierr = 0 ; + + /*determine the factors of n */ + + + if ( nf == 1) + return ; + + k = nf ; + + nspan = abs ( nf*nspn ) ; + ntot = abs ( nspan*nseg) ; + + + if ( isn*ntot == 0 ) + { + ierr = 1 ; + return ; + } + + +/* we search as much 4 in the factor of vector's length as we can */ + + while ( (k- (int)(k/16)*16 ) == 0 ) + { + m++; + nfac[m-1] = 4 ; + k = k >> 4 ; + } + + +/* we search all square factor */ + + do + { + while ( k%jj == 0 ) + { + m++; + nfac[m-1] = j ; + k /= jj ; + + } + + j+=2; + jj= j*j ; + + }while ( jj <= k); + + + + +/* if the remaining size after all the previous division is less than 4 + then it's the last factor */ + if ( k <= 4) + { + + kt = m; + nfac[m] = k; + if ( k != 1 ) + m++; + } + else + { + if ( (k & 3) == 0 ) + { + m++; + nfac[m-1] = 2 ; + k = k >> 2 ; + } + + /*all square factor out now but k >= 5 still */ + kt = m ; + maxp = max ( (kt+1)*2 , k-1); + j=2; + + do + { + if ( k%j == 0 ) + { + + m++; + nfac[m-1] = j ; + k /= j ; + } + + j = (j+1) | 1 ; + + }while ( j <= k ); + + } + + + + if ( m <= ( kt+1) ) + maxp = m + kt + 1 ; + + + + if ( m + kt > 15) + { + ierr = 2 ; + + return ; + } + + + if ( kt != 0 ) + { + j = kt ; + + do{ + m++; + + nfac[m-1] = nfac[j-1]; + j--; + }while ( j != 0) ; + } + + + maxf = nfac[m-kt-1] ; + + if ( kt > 0 ) + maxf = max ( nfac[kt-1] , maxf ); + + + + + for ( kkk = 1 ; kkk <= m ; kkk++ ) + { + maxf = max ( maxf , nfac[kkk-1]); + + } + + + + + + + + nitems = maxf * 4 ; + itype = 4 ; + + + istkgt = 2 + ((lnow-1)/2) ;/*lnow = 10*/ + istkgt = 6; + + /*i = ( (istkgt - 1 + nitems) * isize[3] -1) + 3 ;*/ + i = 12 + nitems*2; + +/* this part is mainly to allocate size for workspace */ + + istak = (int*) malloc ( sizeof (int) * (unsigned int) i); + + istak[i-2] = itype ; + istak[i-1] = lnow ; + lout ++ ; + lnow = i ; + lused = max ( lused , lnow ); + + j = istkgt ; + jj = j + maxf ; + j2 = jj+ maxf ; + j3 = j2+ maxf ; + + nitems = maxp ; + itype = 2 ; + + /*istkgt = ( lnow*isize[1] -1)/isize[1] + 2;*/ + istkgt = lnow + 1 ; + /*i = ( (istkgt - 1 + nitems) * isize[1] -1) / isize[1] + 3 ;*/ + i = lnow + nitems + 2 ; + istak = (int*) realloc ( istak ,sizeof (int) * (unsigned int) i); + rstak = (double*) malloc ( sizeof (double) * (unsigned int) i); + + + + + + + istak[i-2] = itype ; + istak[i-1] = lnow ; + lout ++ ; + lnow = i ; + lused = max ( lused , lnow ); + + k = istkgt ; + +/* +c la carte suivante est a supprimer si simple precision +c next instruction commented by FD&MG (simulog residue?) +c ******************************************** +c k=2*k-1 +c ********************************************* +*/ + + + + dfftmx( a , b , ntot , nf , nspan , + isn , m , kt , &rstak[j-1] , &rstak[jj-1] , + &rstak[j2-1] , &rstak[j3-1] , &istak[k-1] , nfac); + + k =2 ; + + in = 2 ; +/* + if (!( lbook <= lnow && lnow <= lused )) + { + ierr = 3 ; + return ; + } +*/ + while ( in > 0) + { + if ( lbook > istak[lnow-1] || istak[lnow-1] >= lnow-1) + { + ierr = 4 ; + } + + lout-- ; + lnow = istak[lnow-1] ; + in-- ; + } + free(istak); + free(rstak); + + return ; +} |