summaryrefslogtreecommitdiff
path: root/2.3-1/src/c/elementaryFunctions/tan/ztans.c
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/c/elementaryFunctions/tan/ztans.c')
-rw-r--r--2.3-1/src/c/elementaryFunctions/tan/ztans.c104
1 files changed, 104 insertions, 0 deletions
diff --git a/2.3-1/src/c/elementaryFunctions/tan/ztans.c b/2.3-1/src/c/elementaryFunctions/tan/ztans.c
new file mode 100644
index 00000000..761da36b
--- /dev/null
+++ b/2.3-1/src/c/elementaryFunctions/tan/ztans.c
@@ -0,0 +1,104 @@
+/*
+ * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
+ * Copyright (C) 2006-2008 - INRIA - Bruno JOFRET
+ * Copyright (C) Bruno Pincon
+ *
+ * This file must be used under the terms of the CeCILL.
+ * This source file is licensed as described in the file COPYING, which
+ * you should have received as part of this distribution. The terms
+ * are also available at
+ * http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
+ *
+ */
+
+/*
+ ALGORITHM
+ based on the formula :
+
+ 0.5 sin(2 xr) + i 0.5 sinh(2 xi)
+ tan(xr + i xi) = ---------------------------------
+ cos(xr)^2 + sinh(xi)^2
+
+ noting d = cos(xr)^2 + sinh(xi)^2, we have :
+
+ yr = 0.5 * sin(2 * xr) / d (1)
+
+ yi = 0.5 * sinh(2 * xi) / d (2)
+
+ to avoid spurious overflows in computing yi with
+ formula (2) (which results in NaN for yi)
+ we use also the following formula :
+
+ yi = sign(xi) when |xi| > LIM (3)
+
+ Explanations for (3) :
+
+ we have d = sinh(xi)^2 ( 1 + (cos(xr)/sinh(xi))^2 ),
+ so when :
+
+ (cos(xr)/sinh(xi))^2 < epsm ( epsm = max relative error
+ for coding a real in a f.p.
+ number set F(b,p,emin,emax)
+ epsm = 0.5 b^(1-p) )
+ which is forced when :
+
+ 1/sinh(xi)^2 < epsm (4)
+ <=> |xi| > asinh(1/sqrt(epsm)) (= 19.06... in ieee 754 double)
+
+ sinh(xi)^2 is a good approximation for d (relative to the f.p.
+ arithmetic used) and then yr may be approximate with :
+
+ yr = cosh(xi)/sinh(xi)
+ = sign(xi) (1 + exp(-2 |xi|))/(1 - exp(-2|xi|))
+ = sign(xi) (1 + 2 u + 2 u^2 + 2 u^3 + ...)
+
+ with u = exp(-2 |xi|)). Now when :
+
+ 2 exp(-2|xi|) < epsm (2)
+ <=> |xi| > 0.5 * log(2/epsm) (= 18.71... in ieee 754 double)
+
+ sign(xi) is a good approximation for yr.
+
+ Constraint (1) is stronger than (2) and we take finaly
+
+ LIM = 1 + log(2/sqrt(epsm))
+
+ (log(2/sqrt(epsm)) being very near asinh(1/sqrt(epsm))
+
+AUTHOR
+ Bruno Pincon <Bruno.Pincon@iecn.u-nancy.fr>
+*/
+
+#include <math.h>
+#include "lapack.h"
+#include "tan.h"
+#include "sqrt.h"
+#include "cos.h"
+#include "sinh.h"
+#include "sin.h"
+#include "log.h"
+#include "abs.h"
+
+#define localSign(x) x >= 0 ? 1.0 : -1.0
+
+doubleComplex ztans(doubleComplex z) {
+ double Temp = 0;
+ double Lim = 1 + dlogs(2.0 / dsqrts( getRelativeMachinePrecision()));
+ double RealIn = zreals(z);
+ double ImagIn = zimags(z);
+ double RealOut = 0;
+ double ImagOut = 0;
+
+ Temp = pow(dcoss(RealIn), 2) + pow(dsinhs(ImagIn), 2);
+ RealOut = 0.5 * dsins(2 * RealIn) / Temp;
+ if(dabss(ImagIn) < Lim)
+ {
+ ImagOut = 0.5 * dsinhs(2 * ImagIn) / Temp;
+ }
+ else
+ {
+ ImagOut = localSign(ImagIn);
+ }
+
+ return DoubleComplex(RealOut, ImagOut);
+}