diff options
Diffstat (limited to '2.3-1/src/c/elementaryFunctions/sqrt/zsqrts.c')
-rw-r--r-- | 2.3-1/src/c/elementaryFunctions/sqrt/zsqrts.c | 111 |
1 files changed, 111 insertions, 0 deletions
diff --git a/2.3-1/src/c/elementaryFunctions/sqrt/zsqrts.c b/2.3-1/src/c/elementaryFunctions/sqrt/zsqrts.c new file mode 100644 index 00000000..3637ddd6 --- /dev/null +++ b/2.3-1/src/c/elementaryFunctions/sqrt/zsqrts.c @@ -0,0 +1,111 @@ +/*
+ * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
+ * Copyright (C) 2008-2008 - INRIA - Bruno JOFRET
+ * Copyright (C) Bruno Pincon
+ *
+ * This file must be used under the terms of the CeCILL.
+ * This source file is licensed as described in the file COPYING, which
+ * you should have received as part of this distribution. The terms
+ * are also available at
+ * http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
+ *
+ */
+#include <stdio.h>
+#include <math.h>
+#include "sqrt.h"
+#include "lapack.h"
+#include "abs.h"
+#include "sign.h"
+#include "pythag.h"
+
+#ifdef _MSC_VER
+#include <float.h>
+#define isnan(x) _isnan((double)x)
+#endif
+
+#define _sign(a, b) b >=0 ? a : -a
+
+doubleComplex zsqrts(doubleComplex in) {
+ double RMax = getOverflowThreshold();
+ double BRMin = 2 * getUnderflowThreshold();
+
+ double RealIn = zreals(in);
+ double ImgIn = zimags(in);
+
+ double RealOut = 0;
+ double ImgOut = 0;
+
+ if(RealIn == 0)
+ {/* pure imaginary case */
+ if(dabss(ImgIn >= BRMin))
+ RealOut = dsqrts(0.5 * dabss(ImgIn));
+ else
+ RealOut = dsqrts(dabss(ImgIn)) * dsqrts(0.5);
+
+ ImgOut = _sign(1, ImgIn) * RealOut;
+ }
+ else if( dabss(RealIn) <= RMax && dabss(ImgIn) <= RMax)
+ {/* standard case : a (not zero) and b are finite */
+ double Temp = dsqrts(2 * (dabss(RealIn) + dpythags(RealIn, ImgIn)));
+ /* overflow test */
+ if(Temp > RMax)
+ {/* handle (spurious) overflow by scaling a and b */
+ double RealTemp = RealIn / 16;
+ double ImgTemp = ImgIn / 16;
+ Temp = dsqrts(2 * (dabss(RealIn) + dpythags(RealIn, ImgTemp)));
+ if(RealTemp >= 0)
+ {
+ RealOut = 2 * Temp;
+ ImgOut = 4 * ImgTemp / Temp;
+ }
+ else
+ {
+ RealOut = 4 * dabss(ImgIn) / Temp;
+ ImgOut = _sign(2, ImgIn) * Temp;
+ }
+ }
+ else if(RealIn >= 0) /* classic switch to get the stable formulas */
+ {
+ RealOut = 0.5 * Temp;
+ ImgOut = ImgIn / Temp;
+ }
+ else
+ {
+ RealOut = dabss(ImgIn) / Temp;
+ ImgOut = (_sign(0.5, ImgIn)) * Temp;
+ }
+ }
+ else
+ {
+ /*
+ //Here we treat the special cases where a and b are +- 00 or NaN.
+ //The following is the treatment recommended by the C99 standard
+ //with the simplification of returning NaN + i NaN if the
+ //the real part or the imaginary part is NaN (C99 recommends
+ //something more complicated)
+ */
+
+ if(isnan(RealIn) == 1 || isnan(ImgIn) == 1)
+ {/* got NaN + i NaN */
+ RealOut = RealIn + ImgIn;
+ ImgOut = RealOut;
+ }
+ else if( dabss(ImgIn) > RMax)
+ {/* case a +- i oo -> result must be +oo +- i oo for all a (finite or not) */
+ RealOut = dabss(ImgIn);
+ ImgOut = ImgIn;
+ }
+ else if(RealIn < -RMax)
+ {/* here a is -Inf and b is finite */
+ RealOut = 0;
+ ImgOut = _sign(1, ImgIn) * dabss(RealIn);
+ }
+ else
+ {/* here a is +Inf and b is finite */
+ RealOut = RealIn;
+ ImgOut = 0;
+ }
+ }
+
+ return DoubleComplex(RealOut, ImgOut);
+}
|