summaryrefslogtreecommitdiff
path: root/2.3-1/thirdparty/raspberrypi/includes/opencv2/video/tracking.hpp
diff options
context:
space:
mode:
authorsiddhu89902017-04-19 11:56:09 +0530
committersiddhu89902017-04-19 11:56:09 +0530
commit645c51daadc9a5c9374b0465ded05f84bca65183 (patch)
treea2eac389b3e3e67c9182e8369b50eb78b5e698cb /2.3-1/thirdparty/raspberrypi/includes/opencv2/video/tracking.hpp
parent160eb350837f8cd3cdb0943b5929e11f44036826 (diff)
downloadScilab2C-645c51daadc9a5c9374b0465ded05f84bca65183.tar.gz
Scilab2C-645c51daadc9a5c9374b0465ded05f84bca65183.tar.bz2
Scilab2C-645c51daadc9a5c9374b0465ded05f84bca65183.zip
Copyright message updated in added files and libraries separated in 'thirdparty' folder
Diffstat (limited to '2.3-1/thirdparty/raspberrypi/includes/opencv2/video/tracking.hpp')
-rw-r--r--2.3-1/thirdparty/raspberrypi/includes/opencv2/video/tracking.hpp373
1 files changed, 373 insertions, 0 deletions
diff --git a/2.3-1/thirdparty/raspberrypi/includes/opencv2/video/tracking.hpp b/2.3-1/thirdparty/raspberrypi/includes/opencv2/video/tracking.hpp
new file mode 100644
index 00000000..f09be806
--- /dev/null
+++ b/2.3-1/thirdparty/raspberrypi/includes/opencv2/video/tracking.hpp
@@ -0,0 +1,373 @@
+/*! \file tracking.hpp
+ \brief The Object and Feature Tracking
+ */
+
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_TRACKING_HPP__
+#define __OPENCV_TRACKING_HPP__
+
+#include "opencv2/core/core.hpp"
+#include "opencv2/imgproc/imgproc.hpp"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/****************************************************************************************\
+* Motion Analysis *
+\****************************************************************************************/
+
+/************************************ optical flow ***************************************/
+
+#define CV_LKFLOW_PYR_A_READY 1
+#define CV_LKFLOW_PYR_B_READY 2
+#define CV_LKFLOW_INITIAL_GUESSES 4
+#define CV_LKFLOW_GET_MIN_EIGENVALS 8
+
+/* It is Lucas & Kanade method, modified to use pyramids.
+ Also it does several iterations to get optical flow for
+ every point at every pyramid level.
+ Calculates optical flow between two images for certain set of points (i.e.
+ it is a "sparse" optical flow, which is opposite to the previous 3 methods) */
+CVAPI(void) cvCalcOpticalFlowPyrLK( const CvArr* prev, const CvArr* curr,
+ CvArr* prev_pyr, CvArr* curr_pyr,
+ const CvPoint2D32f* prev_features,
+ CvPoint2D32f* curr_features,
+ int count,
+ CvSize win_size,
+ int level,
+ char* status,
+ float* track_error,
+ CvTermCriteria criteria,
+ int flags );
+
+
+/* Modification of a previous sparse optical flow algorithm to calculate
+ affine flow */
+CVAPI(void) cvCalcAffineFlowPyrLK( const CvArr* prev, const CvArr* curr,
+ CvArr* prev_pyr, CvArr* curr_pyr,
+ const CvPoint2D32f* prev_features,
+ CvPoint2D32f* curr_features,
+ float* matrices, int count,
+ CvSize win_size, int level,
+ char* status, float* track_error,
+ CvTermCriteria criteria, int flags );
+
+/* Estimate rigid transformation between 2 images or 2 point sets */
+CVAPI(int) cvEstimateRigidTransform( const CvArr* A, const CvArr* B,
+ CvMat* M, int full_affine );
+
+/* Estimate optical flow for each pixel using the two-frame G. Farneback algorithm */
+CVAPI(void) cvCalcOpticalFlowFarneback( const CvArr* prev, const CvArr* next,
+ CvArr* flow, double pyr_scale, int levels,
+ int winsize, int iterations, int poly_n,
+ double poly_sigma, int flags );
+
+/********************************* motion templates *************************************/
+
+/****************************************************************************************\
+* All the motion template functions work only with single channel images. *
+* Silhouette image must have depth IPL_DEPTH_8U or IPL_DEPTH_8S *
+* Motion history image must have depth IPL_DEPTH_32F, *
+* Gradient mask - IPL_DEPTH_8U or IPL_DEPTH_8S, *
+* Motion orientation image - IPL_DEPTH_32F *
+* Segmentation mask - IPL_DEPTH_32F *
+* All the angles are in degrees, all the times are in milliseconds *
+\****************************************************************************************/
+
+/* Updates motion history image given motion silhouette */
+CVAPI(void) cvUpdateMotionHistory( const CvArr* silhouette, CvArr* mhi,
+ double timestamp, double duration );
+
+/* Calculates gradient of the motion history image and fills
+ a mask indicating where the gradient is valid */
+CVAPI(void) cvCalcMotionGradient( const CvArr* mhi, CvArr* mask, CvArr* orientation,
+ double delta1, double delta2,
+ int aperture_size CV_DEFAULT(3));
+
+/* Calculates average motion direction within a selected motion region
+ (region can be selected by setting ROIs and/or by composing a valid gradient mask
+ with the region mask) */
+CVAPI(double) cvCalcGlobalOrientation( const CvArr* orientation, const CvArr* mask,
+ const CvArr* mhi, double timestamp,
+ double duration );
+
+/* Splits a motion history image into a few parts corresponding to separate independent motions
+ (e.g. left hand, right hand) */
+CVAPI(CvSeq*) cvSegmentMotion( const CvArr* mhi, CvArr* seg_mask,
+ CvMemStorage* storage,
+ double timestamp, double seg_thresh );
+
+/****************************************************************************************\
+* Tracking *
+\****************************************************************************************/
+
+/* Implements CAMSHIFT algorithm - determines object position, size and orientation
+ from the object histogram back project (extension of meanshift) */
+CVAPI(int) cvCamShift( const CvArr* prob_image, CvRect window,
+ CvTermCriteria criteria, CvConnectedComp* comp,
+ CvBox2D* box CV_DEFAULT(NULL) );
+
+/* Implements MeanShift algorithm - determines object position
+ from the object histogram back project */
+CVAPI(int) cvMeanShift( const CvArr* prob_image, CvRect window,
+ CvTermCriteria criteria, CvConnectedComp* comp );
+
+/*
+standard Kalman filter (in G. Welch' and G. Bishop's notation):
+
+ x(k)=A*x(k-1)+B*u(k)+w(k) p(w)~N(0,Q)
+ z(k)=H*x(k)+v(k), p(v)~N(0,R)
+*/
+typedef struct CvKalman
+{
+ int MP; /* number of measurement vector dimensions */
+ int DP; /* number of state vector dimensions */
+ int CP; /* number of control vector dimensions */
+
+ /* backward compatibility fields */
+#if 1
+ float* PosterState; /* =state_pre->data.fl */
+ float* PriorState; /* =state_post->data.fl */
+ float* DynamMatr; /* =transition_matrix->data.fl */
+ float* MeasurementMatr; /* =measurement_matrix->data.fl */
+ float* MNCovariance; /* =measurement_noise_cov->data.fl */
+ float* PNCovariance; /* =process_noise_cov->data.fl */
+ float* KalmGainMatr; /* =gain->data.fl */
+ float* PriorErrorCovariance;/* =error_cov_pre->data.fl */
+ float* PosterErrorCovariance;/* =error_cov_post->data.fl */
+ float* Temp1; /* temp1->data.fl */
+ float* Temp2; /* temp2->data.fl */
+#endif
+
+ CvMat* state_pre; /* predicted state (x'(k)):
+ x(k)=A*x(k-1)+B*u(k) */
+ CvMat* state_post; /* corrected state (x(k)):
+ x(k)=x'(k)+K(k)*(z(k)-H*x'(k)) */
+ CvMat* transition_matrix; /* state transition matrix (A) */
+ CvMat* control_matrix; /* control matrix (B)
+ (it is not used if there is no control)*/
+ CvMat* measurement_matrix; /* measurement matrix (H) */
+ CvMat* process_noise_cov; /* process noise covariance matrix (Q) */
+ CvMat* measurement_noise_cov; /* measurement noise covariance matrix (R) */
+ CvMat* error_cov_pre; /* priori error estimate covariance matrix (P'(k)):
+ P'(k)=A*P(k-1)*At + Q)*/
+ CvMat* gain; /* Kalman gain matrix (K(k)):
+ K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)*/
+ CvMat* error_cov_post; /* posteriori error estimate covariance matrix (P(k)):
+ P(k)=(I-K(k)*H)*P'(k) */
+ CvMat* temp1; /* temporary matrices */
+ CvMat* temp2;
+ CvMat* temp3;
+ CvMat* temp4;
+ CvMat* temp5;
+} CvKalman;
+
+/* Creates Kalman filter and sets A, B, Q, R and state to some initial values */
+CVAPI(CvKalman*) cvCreateKalman( int dynam_params, int measure_params,
+ int control_params CV_DEFAULT(0));
+
+/* Releases Kalman filter state */
+CVAPI(void) cvReleaseKalman( CvKalman** kalman);
+
+/* Updates Kalman filter by time (predicts future state of the system) */
+CVAPI(const CvMat*) cvKalmanPredict( CvKalman* kalman,
+ const CvMat* control CV_DEFAULT(NULL));
+
+/* Updates Kalman filter by measurement
+ (corrects state of the system and internal matrices) */
+CVAPI(const CvMat*) cvKalmanCorrect( CvKalman* kalman, const CvMat* measurement );
+
+#define cvKalmanUpdateByTime cvKalmanPredict
+#define cvKalmanUpdateByMeasurement cvKalmanCorrect
+
+#ifdef __cplusplus
+}
+
+namespace cv
+{
+
+//! updates motion history image using the current silhouette
+CV_EXPORTS_W void updateMotionHistory( InputArray silhouette, InputOutputArray mhi,
+ double timestamp, double duration );
+
+//! computes the motion gradient orientation image from the motion history image
+CV_EXPORTS_W void calcMotionGradient( InputArray mhi, OutputArray mask,
+ OutputArray orientation,
+ double delta1, double delta2,
+ int apertureSize=3 );
+
+//! computes the global orientation of the selected motion history image part
+CV_EXPORTS_W double calcGlobalOrientation( InputArray orientation, InputArray mask,
+ InputArray mhi, double timestamp,
+ double duration );
+
+CV_EXPORTS_W void segmentMotion(InputArray mhi, OutputArray segmask,
+ CV_OUT vector<Rect>& boundingRects,
+ double timestamp, double segThresh);
+
+//! updates the object tracking window using CAMSHIFT algorithm
+CV_EXPORTS_W RotatedRect CamShift( InputArray probImage, CV_OUT CV_IN_OUT Rect& window,
+ TermCriteria criteria );
+
+//! updates the object tracking window using meanshift algorithm
+CV_EXPORTS_W int meanShift( InputArray probImage, CV_OUT CV_IN_OUT Rect& window,
+ TermCriteria criteria );
+
+/*!
+ Kalman filter.
+
+ The class implements standard Kalman filter http://en.wikipedia.org/wiki/Kalman_filter.
+ However, you can modify KalmanFilter::transitionMatrix, KalmanFilter::controlMatrix and
+ KalmanFilter::measurementMatrix to get the extended Kalman filter functionality.
+*/
+class CV_EXPORTS_W KalmanFilter
+{
+public:
+ //! the default constructor
+ CV_WRAP KalmanFilter();
+ //! the full constructor taking the dimensionality of the state, of the measurement and of the control vector
+ CV_WRAP KalmanFilter(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F);
+ //! re-initializes Kalman filter. The previous content is destroyed.
+ void init(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F);
+
+ //! computes predicted state
+ CV_WRAP const Mat& predict(const Mat& control=Mat());
+ //! updates the predicted state from the measurement
+ CV_WRAP const Mat& correct(const Mat& measurement);
+
+ Mat statePre; //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
+ Mat statePost; //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
+ Mat transitionMatrix; //!< state transition matrix (A)
+ Mat controlMatrix; //!< control matrix (B) (not used if there is no control)
+ Mat measurementMatrix; //!< measurement matrix (H)
+ Mat processNoiseCov; //!< process noise covariance matrix (Q)
+ Mat measurementNoiseCov;//!< measurement noise covariance matrix (R)
+ Mat errorCovPre; //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
+ Mat gain; //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
+ Mat errorCovPost; //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
+
+ // temporary matrices
+ Mat temp1;
+ Mat temp2;
+ Mat temp3;
+ Mat temp4;
+ Mat temp5;
+};
+
+enum
+{
+ OPTFLOW_USE_INITIAL_FLOW = CV_LKFLOW_INITIAL_GUESSES,
+ OPTFLOW_LK_GET_MIN_EIGENVALS = CV_LKFLOW_GET_MIN_EIGENVALS,
+ OPTFLOW_FARNEBACK_GAUSSIAN = 256
+};
+
+//! constructs a pyramid which can be used as input for calcOpticalFlowPyrLK
+CV_EXPORTS_W int buildOpticalFlowPyramid(InputArray img, OutputArrayOfArrays pyramid,
+ Size winSize, int maxLevel, bool withDerivatives = true,
+ int pyrBorder = BORDER_REFLECT_101, int derivBorder = BORDER_CONSTANT,
+ bool tryReuseInputImage = true);
+
+//! computes sparse optical flow using multi-scale Lucas-Kanade algorithm
+CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg,
+ InputArray prevPts, CV_OUT InputOutputArray nextPts,
+ OutputArray status, OutputArray err,
+ Size winSize=Size(21,21), int maxLevel=3,
+ TermCriteria criteria=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
+ int flags=0, double minEigThreshold=1e-4);
+
+//! computes dense optical flow using Farneback algorithm
+CV_EXPORTS_W void calcOpticalFlowFarneback( InputArray prev, InputArray next,
+ CV_OUT InputOutputArray flow, double pyr_scale, int levels, int winsize,
+ int iterations, int poly_n, double poly_sigma, int flags );
+
+//! estimates the best-fit Euqcidean, similarity, affine or perspective transformation
+// that maps one 2D point set to another or one image to another.
+CV_EXPORTS_W Mat estimateRigidTransform( InputArray src, InputArray dst,
+ bool fullAffine);
+
+//! computes dense optical flow using Simple Flow algorithm
+CV_EXPORTS_W void calcOpticalFlowSF(Mat& from,
+ Mat& to,
+ Mat& flow,
+ int layers,
+ int averaging_block_size,
+ int max_flow);
+
+CV_EXPORTS_W void calcOpticalFlowSF(Mat& from,
+ Mat& to,
+ Mat& flow,
+ int layers,
+ int averaging_block_size,
+ int max_flow,
+ double sigma_dist,
+ double sigma_color,
+ int postprocess_window,
+ double sigma_dist_fix,
+ double sigma_color_fix,
+ double occ_thr,
+ int upscale_averaging_radius,
+ double upscale_sigma_dist,
+ double upscale_sigma_color,
+ double speed_up_thr);
+
+class CV_EXPORTS DenseOpticalFlow : public Algorithm
+{
+public:
+ virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow) = 0;
+ virtual void collectGarbage() = 0;
+};
+
+// Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method
+//
+// see reference:
+// [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
+// [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
+CV_EXPORTS Ptr<DenseOpticalFlow> createOptFlow_DualTVL1();
+
+}
+
+#endif
+
+#endif