diff options
author | siddhu8990 | 2017-04-19 11:56:09 +0530 |
---|---|---|
committer | siddhu8990 | 2017-04-19 11:56:09 +0530 |
commit | 645c51daadc9a5c9374b0465ded05f84bca65183 (patch) | |
tree | a2eac389b3e3e67c9182e8369b50eb78b5e698cb /2.3-1/thirdparty/raspberrypi/includes/opencv2/imgproc/imgproc.hpp | |
parent | 160eb350837f8cd3cdb0943b5929e11f44036826 (diff) | |
download | Scilab2C-645c51daadc9a5c9374b0465ded05f84bca65183.tar.gz Scilab2C-645c51daadc9a5c9374b0465ded05f84bca65183.tar.bz2 Scilab2C-645c51daadc9a5c9374b0465ded05f84bca65183.zip |
Copyright message updated in added files and libraries separated in 'thirdparty' folder
Diffstat (limited to '2.3-1/thirdparty/raspberrypi/includes/opencv2/imgproc/imgproc.hpp')
-rw-r--r-- | 2.3-1/thirdparty/raspberrypi/includes/opencv2/imgproc/imgproc.hpp | 1299 |
1 files changed, 1299 insertions, 0 deletions
diff --git a/2.3-1/thirdparty/raspberrypi/includes/opencv2/imgproc/imgproc.hpp b/2.3-1/thirdparty/raspberrypi/includes/opencv2/imgproc/imgproc.hpp new file mode 100644 index 00000000..aa6a5f6c --- /dev/null +++ b/2.3-1/thirdparty/raspberrypi/includes/opencv2/imgproc/imgproc.hpp @@ -0,0 +1,1299 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_IMGPROC_HPP__ +#define __OPENCV_IMGPROC_HPP__ + +#include "opencv2/core/core.hpp" +#include "opencv2/imgproc/types_c.h" + +#ifdef __cplusplus + +/*! \namespace cv + Namespace where all the C++ OpenCV functionality resides + */ +namespace cv +{ + +//! various border interpolation methods +enum { BORDER_REPLICATE=IPL_BORDER_REPLICATE, BORDER_CONSTANT=IPL_BORDER_CONSTANT, + BORDER_REFLECT=IPL_BORDER_REFLECT, BORDER_WRAP=IPL_BORDER_WRAP, + BORDER_REFLECT_101=IPL_BORDER_REFLECT_101, BORDER_REFLECT101=BORDER_REFLECT_101, + BORDER_TRANSPARENT=IPL_BORDER_TRANSPARENT, + BORDER_DEFAULT=BORDER_REFLECT_101, BORDER_ISOLATED=16 }; + +//! 1D interpolation function: returns coordinate of the "donor" pixel for the specified location p. +CV_EXPORTS_W int borderInterpolate( int p, int len, int borderType ); + +/*! + The Base Class for 1D or Row-wise Filters + + This is the base class for linear or non-linear filters that process 1D data. + In particular, such filters are used for the "horizontal" filtering parts in separable filters. + + Several functions in OpenCV return Ptr<BaseRowFilter> for the specific types of filters, + and those pointers can be used directly or within cv::FilterEngine. +*/ +class CV_EXPORTS BaseRowFilter +{ +public: + //! the default constructor + BaseRowFilter(); + //! the destructor + virtual ~BaseRowFilter(); + //! the filtering operator. Must be overridden in the derived classes. The horizontal border interpolation is done outside of the class. + virtual void operator()(const uchar* src, uchar* dst, + int width, int cn) = 0; + int ksize, anchor; +}; + + +/*! + The Base Class for Column-wise Filters + + This is the base class for linear or non-linear filters that process columns of 2D arrays. + Such filters are used for the "vertical" filtering parts in separable filters. + + Several functions in OpenCV return Ptr<BaseColumnFilter> for the specific types of filters, + and those pointers can be used directly or within cv::FilterEngine. + + Unlike cv::BaseRowFilter, cv::BaseColumnFilter may have some context information, + i.e. box filter keeps the sliding sum of elements. To reset the state BaseColumnFilter::reset() + must be called (e.g. the method is called by cv::FilterEngine) + */ +class CV_EXPORTS BaseColumnFilter +{ +public: + //! the default constructor + BaseColumnFilter(); + //! the destructor + virtual ~BaseColumnFilter(); + //! the filtering operator. Must be overridden in the derived classes. The vertical border interpolation is done outside of the class. + virtual void operator()(const uchar** src, uchar* dst, int dststep, + int dstcount, int width) = 0; + //! resets the internal buffers, if any + virtual void reset(); + int ksize, anchor; +}; + +/*! + The Base Class for Non-Separable 2D Filters. + + This is the base class for linear or non-linear 2D filters. + + Several functions in OpenCV return Ptr<BaseFilter> for the specific types of filters, + and those pointers can be used directly or within cv::FilterEngine. + + Similar to cv::BaseColumnFilter, the class may have some context information, + that should be reset using BaseFilter::reset() method before processing the new array. +*/ +class CV_EXPORTS BaseFilter +{ +public: + //! the default constructor + BaseFilter(); + //! the destructor + virtual ~BaseFilter(); + //! the filtering operator. The horizontal and the vertical border interpolation is done outside of the class. + virtual void operator()(const uchar** src, uchar* dst, int dststep, + int dstcount, int width, int cn) = 0; + //! resets the internal buffers, if any + virtual void reset(); + Size ksize; + Point anchor; +}; + +/*! + The Main Class for Image Filtering. + + The class can be used to apply an arbitrary filtering operation to an image. + It contains all the necessary intermediate buffers, it computes extrapolated values + of the "virtual" pixels outside of the image etc. + Pointers to the initialized cv::FilterEngine instances + are returned by various OpenCV functions, such as cv::createSeparableLinearFilter(), + cv::createLinearFilter(), cv::createGaussianFilter(), cv::createDerivFilter(), + cv::createBoxFilter() and cv::createMorphologyFilter(). + + Using the class you can process large images by parts and build complex pipelines + that include filtering as some of the stages. If all you need is to apply some pre-defined + filtering operation, you may use cv::filter2D(), cv::erode(), cv::dilate() etc. + functions that create FilterEngine internally. + + Here is the example on how to use the class to implement Laplacian operator, which is the sum of + second-order derivatives. More complex variant for different types is implemented in cv::Laplacian(). + + \code + void laplace_f(const Mat& src, Mat& dst) + { + CV_Assert( src.type() == CV_32F ); + // make sure the destination array has the proper size and type + dst.create(src.size(), src.type()); + + // get the derivative and smooth kernels for d2I/dx2. + // for d2I/dy2 we could use the same kernels, just swapped + Mat kd, ks; + getSobelKernels( kd, ks, 2, 0, ksize, false, ktype ); + + // let's process 10 source rows at once + int DELTA = std::min(10, src.rows); + Ptr<FilterEngine> Fxx = createSeparableLinearFilter(src.type(), + dst.type(), kd, ks, Point(-1,-1), 0, borderType, borderType, Scalar() ); + Ptr<FilterEngine> Fyy = createSeparableLinearFilter(src.type(), + dst.type(), ks, kd, Point(-1,-1), 0, borderType, borderType, Scalar() ); + + int y = Fxx->start(src), dsty = 0, dy = 0; + Fyy->start(src); + const uchar* sptr = src.data + y*src.step; + + // allocate the buffers for the spatial image derivatives; + // the buffers need to have more than DELTA rows, because at the + // last iteration the output may take max(kd.rows-1,ks.rows-1) + // rows more than the input. + Mat Ixx( DELTA + kd.rows - 1, src.cols, dst.type() ); + Mat Iyy( DELTA + kd.rows - 1, src.cols, dst.type() ); + + // inside the loop we always pass DELTA rows to the filter + // (note that the "proceed" method takes care of possibe overflow, since + // it was given the actual image height in the "start" method) + // on output we can get: + // * < DELTA rows (the initial buffer accumulation stage) + // * = DELTA rows (settled state in the middle) + // * > DELTA rows (then the input image is over, but we generate + // "virtual" rows using the border mode and filter them) + // this variable number of output rows is dy. + // dsty is the current output row. + // sptr is the pointer to the first input row in the portion to process + for( ; dsty < dst.rows; sptr += DELTA*src.step, dsty += dy ) + { + Fxx->proceed( sptr, (int)src.step, DELTA, Ixx.data, (int)Ixx.step ); + dy = Fyy->proceed( sptr, (int)src.step, DELTA, d2y.data, (int)Iyy.step ); + if( dy > 0 ) + { + Mat dstripe = dst.rowRange(dsty, dsty + dy); + add(Ixx.rowRange(0, dy), Iyy.rowRange(0, dy), dstripe); + } + } + } + \endcode +*/ +class CV_EXPORTS FilterEngine +{ +public: + //! the default constructor + FilterEngine(); + //! the full constructor. Either _filter2D or both _rowFilter and _columnFilter must be non-empty. + FilterEngine(const Ptr<BaseFilter>& _filter2D, + const Ptr<BaseRowFilter>& _rowFilter, + const Ptr<BaseColumnFilter>& _columnFilter, + int srcType, int dstType, int bufType, + int _rowBorderType=BORDER_REPLICATE, + int _columnBorderType=-1, + const Scalar& _borderValue=Scalar()); + //! the destructor + virtual ~FilterEngine(); + //! reinitializes the engine. The previously assigned filters are released. + void init(const Ptr<BaseFilter>& _filter2D, + const Ptr<BaseRowFilter>& _rowFilter, + const Ptr<BaseColumnFilter>& _columnFilter, + int srcType, int dstType, int bufType, + int _rowBorderType=BORDER_REPLICATE, int _columnBorderType=-1, + const Scalar& _borderValue=Scalar()); + //! starts filtering of the specified ROI of an image of size wholeSize. + virtual int start(Size wholeSize, Rect roi, int maxBufRows=-1); + //! starts filtering of the specified ROI of the specified image. + virtual int start(const Mat& src, const Rect& srcRoi=Rect(0,0,-1,-1), + bool isolated=false, int maxBufRows=-1); + //! processes the next srcCount rows of the image. + virtual int proceed(const uchar* src, int srcStep, int srcCount, + uchar* dst, int dstStep); + //! applies filter to the specified ROI of the image. if srcRoi=(0,0,-1,-1), the whole image is filtered. + virtual void apply( const Mat& src, Mat& dst, + const Rect& srcRoi=Rect(0,0,-1,-1), + Point dstOfs=Point(0,0), + bool isolated=false); + //! returns true if the filter is separable + bool isSeparable() const { return (const BaseFilter*)filter2D == 0; } + //! returns the number + int remainingInputRows() const; + int remainingOutputRows() const; + + int srcType, dstType, bufType; + Size ksize; + Point anchor; + int maxWidth; + Size wholeSize; + Rect roi; + int dx1, dx2; + int rowBorderType, columnBorderType; + vector<int> borderTab; + int borderElemSize; + vector<uchar> ringBuf; + vector<uchar> srcRow; + vector<uchar> constBorderValue; + vector<uchar> constBorderRow; + int bufStep, startY, startY0, endY, rowCount, dstY; + vector<uchar*> rows; + + Ptr<BaseFilter> filter2D; + Ptr<BaseRowFilter> rowFilter; + Ptr<BaseColumnFilter> columnFilter; +}; + +//! type of the kernel +enum { KERNEL_GENERAL=0, KERNEL_SYMMETRICAL=1, KERNEL_ASYMMETRICAL=2, + KERNEL_SMOOTH=4, KERNEL_INTEGER=8 }; + +//! returns type (one of KERNEL_*) of 1D or 2D kernel specified by its coefficients. +CV_EXPORTS int getKernelType(InputArray kernel, Point anchor); + +//! returns the primitive row filter with the specified kernel +CV_EXPORTS Ptr<BaseRowFilter> getLinearRowFilter(int srcType, int bufType, + InputArray kernel, int anchor, + int symmetryType); + +//! returns the primitive column filter with the specified kernel +CV_EXPORTS Ptr<BaseColumnFilter> getLinearColumnFilter(int bufType, int dstType, + InputArray kernel, int anchor, + int symmetryType, double delta=0, + int bits=0); + +//! returns 2D filter with the specified kernel +CV_EXPORTS Ptr<BaseFilter> getLinearFilter(int srcType, int dstType, + InputArray kernel, + Point anchor=Point(-1,-1), + double delta=0, int bits=0); + +//! returns the separable linear filter engine +CV_EXPORTS Ptr<FilterEngine> createSeparableLinearFilter(int srcType, int dstType, + InputArray rowKernel, InputArray columnKernel, + Point anchor=Point(-1,-1), double delta=0, + int rowBorderType=BORDER_DEFAULT, + int columnBorderType=-1, + const Scalar& borderValue=Scalar()); + +//! returns the non-separable linear filter engine +CV_EXPORTS Ptr<FilterEngine> createLinearFilter(int srcType, int dstType, + InputArray kernel, Point _anchor=Point(-1,-1), + double delta=0, int rowBorderType=BORDER_DEFAULT, + int columnBorderType=-1, const Scalar& borderValue=Scalar()); + +//! returns the Gaussian kernel with the specified parameters +CV_EXPORTS_W Mat getGaussianKernel( int ksize, double sigma, int ktype=CV_64F ); + +//! returns the Gaussian filter engine +CV_EXPORTS Ptr<FilterEngine> createGaussianFilter( int type, Size ksize, + double sigma1, double sigma2=0, + int borderType=BORDER_DEFAULT); +//! initializes kernels of the generalized Sobel operator +CV_EXPORTS_W void getDerivKernels( OutputArray kx, OutputArray ky, + int dx, int dy, int ksize, + bool normalize=false, int ktype=CV_32F ); +//! returns filter engine for the generalized Sobel operator +CV_EXPORTS Ptr<FilterEngine> createDerivFilter( int srcType, int dstType, + int dx, int dy, int ksize, + int borderType=BORDER_DEFAULT ); +//! returns horizontal 1D box filter +CV_EXPORTS Ptr<BaseRowFilter> getRowSumFilter(int srcType, int sumType, + int ksize, int anchor=-1); +//! returns vertical 1D box filter +CV_EXPORTS Ptr<BaseColumnFilter> getColumnSumFilter( int sumType, int dstType, + int ksize, int anchor=-1, + double scale=1); +//! returns box filter engine +CV_EXPORTS Ptr<FilterEngine> createBoxFilter( int srcType, int dstType, Size ksize, + Point anchor=Point(-1,-1), + bool normalize=true, + int borderType=BORDER_DEFAULT); + +//! returns the Gabor kernel with the specified parameters +CV_EXPORTS_W Mat getGaborKernel( Size ksize, double sigma, double theta, double lambd, + double gamma, double psi=CV_PI*0.5, int ktype=CV_64F ); + +//! type of morphological operation +enum { MORPH_ERODE=CV_MOP_ERODE, MORPH_DILATE=CV_MOP_DILATE, + MORPH_OPEN=CV_MOP_OPEN, MORPH_CLOSE=CV_MOP_CLOSE, + MORPH_GRADIENT=CV_MOP_GRADIENT, MORPH_TOPHAT=CV_MOP_TOPHAT, + MORPH_BLACKHAT=CV_MOP_BLACKHAT, MORPH_HITMISS }; + +//! returns horizontal 1D morphological filter +CV_EXPORTS Ptr<BaseRowFilter> getMorphologyRowFilter(int op, int type, int ksize, int anchor=-1); +//! returns vertical 1D morphological filter +CV_EXPORTS Ptr<BaseColumnFilter> getMorphologyColumnFilter(int op, int type, int ksize, int anchor=-1); +//! returns 2D morphological filter +CV_EXPORTS Ptr<BaseFilter> getMorphologyFilter(int op, int type, InputArray kernel, + Point anchor=Point(-1,-1)); + +//! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation. +static inline Scalar morphologyDefaultBorderValue() { return Scalar::all(DBL_MAX); } + +//! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported. +CV_EXPORTS Ptr<FilterEngine> createMorphologyFilter(int op, int type, InputArray kernel, + Point anchor=Point(-1,-1), int rowBorderType=BORDER_CONSTANT, + int columnBorderType=-1, + const Scalar& borderValue=morphologyDefaultBorderValue()); + +//! shape of the structuring element +enum { MORPH_RECT=0, MORPH_CROSS=1, MORPH_ELLIPSE=2 }; +//! returns structuring element of the specified shape and size +CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor=Point(-1,-1)); + +template<> CV_EXPORTS void Ptr<IplConvKernel>::delete_obj(); + +//! copies 2D array to a larger destination array with extrapolation of the outer part of src using the specified border mode +CV_EXPORTS_W void copyMakeBorder( InputArray src, OutputArray dst, + int top, int bottom, int left, int right, + int borderType, const Scalar& value=Scalar() ); + +//! smooths the image using median filter. +CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize ); +//! smooths the image using Gaussian filter. +CV_EXPORTS_W void GaussianBlur( InputArray src, + OutputArray dst, Size ksize, + double sigmaX, double sigmaY=0, + int borderType=BORDER_DEFAULT ); +//! smooths the image using bilateral filter +CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d, + double sigmaColor, double sigmaSpace, + int borderType=BORDER_DEFAULT ); +//! smooths the image using adaptive bilateral filter +CV_EXPORTS_W void adaptiveBilateralFilter( InputArray src, OutputArray dst, Size ksize, + double sigmaSpace, double maxSigmaColor = 20.0, Point anchor=Point(-1, -1), + int borderType=BORDER_DEFAULT ); +//! smooths the image using the box filter. Each pixel is processed in O(1) time +CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth, + Size ksize, Point anchor=Point(-1,-1), + bool normalize=true, + int borderType=BORDER_DEFAULT ); +//! a synonym for normalized box filter +CV_EXPORTS_W void blur( InputArray src, OutputArray dst, + Size ksize, Point anchor=Point(-1,-1), + int borderType=BORDER_DEFAULT ); + +//! applies non-separable 2D linear filter to the image +CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth, + InputArray kernel, Point anchor=Point(-1,-1), + double delta=0, int borderType=BORDER_DEFAULT ); + +//! applies separable 2D linear filter to the image +CV_EXPORTS_W void sepFilter2D( InputArray src, OutputArray dst, int ddepth, + InputArray kernelX, InputArray kernelY, + Point anchor=Point(-1,-1), + double delta=0, int borderType=BORDER_DEFAULT ); + +//! applies generalized Sobel operator to the image +CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth, + int dx, int dy, int ksize=3, + double scale=1, double delta=0, + int borderType=BORDER_DEFAULT ); + +//! applies the vertical or horizontal Scharr operator to the image +CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth, + int dx, int dy, double scale=1, double delta=0, + int borderType=BORDER_DEFAULT ); + +//! applies Laplacian operator to the image +CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth, + int ksize=1, double scale=1, double delta=0, + int borderType=BORDER_DEFAULT ); + +//! applies Canny edge detector and produces the edge map. +CV_EXPORTS_W void Canny( InputArray image, OutputArray edges, + double threshold1, double threshold2, + int apertureSize=3, bool L2gradient=false ); + +//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria +CV_EXPORTS_W void cornerMinEigenVal( InputArray src, OutputArray dst, + int blockSize, int ksize=3, + int borderType=BORDER_DEFAULT ); + +//! computes Harris cornerness criteria at each image pixel +CV_EXPORTS_W void cornerHarris( InputArray src, OutputArray dst, int blockSize, + int ksize, double k, + int borderType=BORDER_DEFAULT ); + +// low-level function for computing eigenvalues and eigenvectors of 2x2 matrices +CV_EXPORTS void eigen2x2( const float* a, float* e, int n ); + +//! computes both eigenvalues and the eigenvectors of 2x2 derivative covariation matrix at each pixel. The output is stored as 6-channel matrix. +CV_EXPORTS_W void cornerEigenValsAndVecs( InputArray src, OutputArray dst, + int blockSize, int ksize, + int borderType=BORDER_DEFAULT ); + +//! computes another complex cornerness criteria at each pixel +CV_EXPORTS_W void preCornerDetect( InputArray src, OutputArray dst, int ksize, + int borderType=BORDER_DEFAULT ); + +//! adjusts the corner locations with sub-pixel accuracy to maximize the certain cornerness criteria +CV_EXPORTS_W void cornerSubPix( InputArray image, InputOutputArray corners, + Size winSize, Size zeroZone, + TermCriteria criteria ); + +//! finds the strong enough corners where the cornerMinEigenVal() or cornerHarris() report the local maxima +CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners, + int maxCorners, double qualityLevel, double minDistance, + InputArray mask=noArray(), int blockSize=3, + bool useHarrisDetector=false, double k=0.04 ); + +//! finds lines in the black-n-white image using the standard or pyramid Hough transform +CV_EXPORTS_W void HoughLines( InputArray image, OutputArray lines, + double rho, double theta, int threshold, + double srn=0, double stn=0 ); + +//! finds line segments in the black-n-white image using probabilistic Hough transform +CV_EXPORTS_W void HoughLinesP( InputArray image, OutputArray lines, + double rho, double theta, int threshold, + double minLineLength=0, double maxLineGap=0 ); + +//! finds circles in the grayscale image using 2+1 gradient Hough transform +CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles, + int method, double dp, double minDist, + double param1=100, double param2=100, + int minRadius=0, int maxRadius=0 ); + +enum +{ + GHT_POSITION = 0, + GHT_SCALE = 1, + GHT_ROTATION = 2 +}; + +//! finds arbitrary template in the grayscale image using Generalized Hough Transform +//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122. +//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038. +class CV_EXPORTS GeneralizedHough : public Algorithm +{ +public: + static Ptr<GeneralizedHough> create(int method); + + virtual ~GeneralizedHough(); + + //! set template to search + void setTemplate(InputArray templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1)); + void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1)); + + //! find template on image + void detect(InputArray image, OutputArray positions, OutputArray votes = cv::noArray(), int cannyThreshold = 100); + void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = cv::noArray()); + + void release(); + +protected: + virtual void setTemplateImpl(const Mat& edges, const Mat& dx, const Mat& dy, Point templCenter) = 0; + virtual void detectImpl(const Mat& edges, const Mat& dx, const Mat& dy, OutputArray positions, OutputArray votes) = 0; + virtual void releaseImpl() = 0; + +private: + Mat edges_, dx_, dy_; +}; + +//! erodes the image (applies the local minimum operator) +CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel, + Point anchor=Point(-1,-1), int iterations=1, + int borderType=BORDER_CONSTANT, + const Scalar& borderValue=morphologyDefaultBorderValue() ); + +//! dilates the image (applies the local maximum operator) +CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel, + Point anchor=Point(-1,-1), int iterations=1, + int borderType=BORDER_CONSTANT, + const Scalar& borderValue=morphologyDefaultBorderValue() ); + +//! applies an advanced morphological operation to the image +CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst, + int op, InputArray kernel, + Point anchor=Point(-1,-1), int iterations=1, + int borderType=BORDER_CONSTANT, + const Scalar& borderValue=morphologyDefaultBorderValue() ); + +//! interpolation algorithm +enum +{ + INTER_NEAREST=CV_INTER_NN, //!< nearest neighbor interpolation + INTER_LINEAR=CV_INTER_LINEAR, //!< bilinear interpolation + INTER_CUBIC=CV_INTER_CUBIC, //!< bicubic interpolation + INTER_AREA=CV_INTER_AREA, //!< area-based (or super) interpolation + INTER_LANCZOS4=CV_INTER_LANCZOS4, //!< Lanczos interpolation over 8x8 neighborhood + INTER_MAX=7, + WARP_INVERSE_MAP=CV_WARP_INVERSE_MAP +}; + +//! resizes the image +CV_EXPORTS_W void resize( InputArray src, OutputArray dst, + Size dsize, double fx=0, double fy=0, + int interpolation=INTER_LINEAR ); + +//! warps the image using affine transformation +CV_EXPORTS_W void warpAffine( InputArray src, OutputArray dst, + InputArray M, Size dsize, + int flags=INTER_LINEAR, + int borderMode=BORDER_CONSTANT, + const Scalar& borderValue=Scalar()); + +//! warps the image using perspective transformation +CV_EXPORTS_W void warpPerspective( InputArray src, OutputArray dst, + InputArray M, Size dsize, + int flags=INTER_LINEAR, + int borderMode=BORDER_CONSTANT, + const Scalar& borderValue=Scalar()); + +enum +{ + INTER_BITS=5, INTER_BITS2=INTER_BITS*2, + INTER_TAB_SIZE=(1<<INTER_BITS), + INTER_TAB_SIZE2=INTER_TAB_SIZE*INTER_TAB_SIZE +}; + +//! warps the image using the precomputed maps. The maps are stored in either floating-point or integer fixed-point format +CV_EXPORTS_W void remap( InputArray src, OutputArray dst, + InputArray map1, InputArray map2, + int interpolation, int borderMode=BORDER_CONSTANT, + const Scalar& borderValue=Scalar()); + +//! converts maps for remap from floating-point to fixed-point format or backwards +CV_EXPORTS_W void convertMaps( InputArray map1, InputArray map2, + OutputArray dstmap1, OutputArray dstmap2, + int dstmap1type, bool nninterpolation=false ); + +//! returns 2x3 affine transformation matrix for the planar rotation. +CV_EXPORTS_W Mat getRotationMatrix2D( Point2f center, double angle, double scale ); +//! returns 3x3 perspective transformation for the corresponding 4 point pairs. +CV_EXPORTS Mat getPerspectiveTransform( const Point2f src[], const Point2f dst[] ); +//! returns 2x3 affine transformation for the corresponding 3 point pairs. +CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] ); +//! computes 2x3 affine transformation matrix that is inverse to the specified 2x3 affine transformation. +CV_EXPORTS_W void invertAffineTransform( InputArray M, OutputArray iM ); + +CV_EXPORTS_W Mat getPerspectiveTransform( InputArray src, InputArray dst ); +CV_EXPORTS_W Mat getAffineTransform( InputArray src, InputArray dst ); + +//! extracts rectangle from the image at sub-pixel location +CV_EXPORTS_W void getRectSubPix( InputArray image, Size patchSize, + Point2f center, OutputArray patch, int patchType=-1 ); + +//! computes the integral image +CV_EXPORTS_W void integral( InputArray src, OutputArray sum, int sdepth=-1 ); + +//! computes the integral image and integral for the squared image +CV_EXPORTS_AS(integral2) void integral( InputArray src, OutputArray sum, + OutputArray sqsum, int sdepth=-1 ); +//! computes the integral image, integral for the squared image and the tilted integral image +CV_EXPORTS_AS(integral3) void integral( InputArray src, OutputArray sum, + OutputArray sqsum, OutputArray tilted, + int sdepth=-1 ); + +//! adds image to the accumulator (dst += src). Unlike cv::add, dst and src can have different types. +CV_EXPORTS_W void accumulate( InputArray src, InputOutputArray dst, + InputArray mask=noArray() ); +//! adds squared src image to the accumulator (dst += src*src). +CV_EXPORTS_W void accumulateSquare( InputArray src, InputOutputArray dst, + InputArray mask=noArray() ); +//! adds product of the 2 images to the accumulator (dst += src1*src2). +CV_EXPORTS_W void accumulateProduct( InputArray src1, InputArray src2, + InputOutputArray dst, InputArray mask=noArray() ); +//! updates the running average (dst = dst*(1-alpha) + src*alpha) +CV_EXPORTS_W void accumulateWeighted( InputArray src, InputOutputArray dst, + double alpha, InputArray mask=noArray() ); + +//! computes PSNR image/video quality metric +CV_EXPORTS_W double PSNR(InputArray src1, InputArray src2); + +CV_EXPORTS_W Point2d phaseCorrelate(InputArray src1, InputArray src2, + InputArray window = noArray()); +CV_EXPORTS_W Point2d phaseCorrelateRes(InputArray src1, InputArray src2, + InputArray window, CV_OUT double* response = 0); +CV_EXPORTS_W void createHanningWindow(OutputArray dst, Size winSize, int type); + +//! type of the threshold operation +enum { THRESH_BINARY=CV_THRESH_BINARY, THRESH_BINARY_INV=CV_THRESH_BINARY_INV, + THRESH_TRUNC=CV_THRESH_TRUNC, THRESH_TOZERO=CV_THRESH_TOZERO, + THRESH_TOZERO_INV=CV_THRESH_TOZERO_INV, THRESH_MASK=CV_THRESH_MASK, + THRESH_OTSU=CV_THRESH_OTSU }; + +//! applies fixed threshold to the image +CV_EXPORTS_W double threshold( InputArray src, OutputArray dst, + double thresh, double maxval, int type ); + +//! adaptive threshold algorithm +enum { ADAPTIVE_THRESH_MEAN_C=0, ADAPTIVE_THRESH_GAUSSIAN_C=1 }; + +//! applies variable (adaptive) threshold to the image +CV_EXPORTS_W void adaptiveThreshold( InputArray src, OutputArray dst, + double maxValue, int adaptiveMethod, + int thresholdType, int blockSize, double C ); + +//! smooths and downsamples the image +CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst, + const Size& dstsize=Size(), int borderType=BORDER_DEFAULT ); +//! upsamples and smoothes the image +CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst, + const Size& dstsize=Size(), int borderType=BORDER_DEFAULT ); + +//! builds the gaussian pyramid using pyrDown() as a basic operation +CV_EXPORTS void buildPyramid( InputArray src, OutputArrayOfArrays dst, + int maxlevel, int borderType=BORDER_DEFAULT ); + +//! corrects lens distortion for the given camera matrix and distortion coefficients +CV_EXPORTS_W void undistort( InputArray src, OutputArray dst, + InputArray cameraMatrix, + InputArray distCoeffs, + InputArray newCameraMatrix=noArray() ); + +//! initializes maps for cv::remap() to correct lens distortion and optionally rectify the image +CV_EXPORTS_W void initUndistortRectifyMap( InputArray cameraMatrix, InputArray distCoeffs, + InputArray R, InputArray newCameraMatrix, + Size size, int m1type, OutputArray map1, OutputArray map2 ); + +enum +{ + PROJ_SPHERICAL_ORTHO = 0, + PROJ_SPHERICAL_EQRECT = 1 +}; + +//! initializes maps for cv::remap() for wide-angle +CV_EXPORTS_W float initWideAngleProjMap( InputArray cameraMatrix, InputArray distCoeffs, + Size imageSize, int destImageWidth, + int m1type, OutputArray map1, OutputArray map2, + int projType=PROJ_SPHERICAL_EQRECT, double alpha=0); + +//! returns the default new camera matrix (by default it is the same as cameraMatrix unless centerPricipalPoint=true) +CV_EXPORTS_W Mat getDefaultNewCameraMatrix( InputArray cameraMatrix, Size imgsize=Size(), + bool centerPrincipalPoint=false ); + +//! returns points' coordinates after lens distortion correction +CV_EXPORTS_W void undistortPoints( InputArray src, OutputArray dst, + InputArray cameraMatrix, InputArray distCoeffs, + InputArray R=noArray(), InputArray P=noArray()); + +template<> CV_EXPORTS void Ptr<CvHistogram>::delete_obj(); + +//! computes the joint dense histogram for a set of images. +CV_EXPORTS void calcHist( const Mat* images, int nimages, + const int* channels, InputArray mask, + OutputArray hist, int dims, const int* histSize, + const float** ranges, bool uniform=true, bool accumulate=false ); + +//! computes the joint sparse histogram for a set of images. +CV_EXPORTS void calcHist( const Mat* images, int nimages, + const int* channels, InputArray mask, + SparseMat& hist, int dims, + const int* histSize, const float** ranges, + bool uniform=true, bool accumulate=false ); + +CV_EXPORTS_W void calcHist( InputArrayOfArrays images, + const vector<int>& channels, + InputArray mask, OutputArray hist, + const vector<int>& histSize, + const vector<float>& ranges, + bool accumulate=false ); + +//! computes back projection for the set of images +CV_EXPORTS void calcBackProject( const Mat* images, int nimages, + const int* channels, InputArray hist, + OutputArray backProject, const float** ranges, + double scale=1, bool uniform=true ); + +//! computes back projection for the set of images +CV_EXPORTS void calcBackProject( const Mat* images, int nimages, + const int* channels, const SparseMat& hist, + OutputArray backProject, const float** ranges, + double scale=1, bool uniform=true ); + +CV_EXPORTS_W void calcBackProject( InputArrayOfArrays images, const vector<int>& channels, + InputArray hist, OutputArray dst, + const vector<float>& ranges, + double scale ); + +/*CV_EXPORTS void calcBackProjectPatch( const Mat* images, int nimages, const int* channels, + InputArray hist, OutputArray dst, Size patchSize, + int method, double factor=1 ); + +CV_EXPORTS_W void calcBackProjectPatch( InputArrayOfArrays images, const vector<int>& channels, + InputArray hist, OutputArray dst, Size patchSize, + int method, double factor=1 );*/ + +//! compares two histograms stored in dense arrays +CV_EXPORTS_W double compareHist( InputArray H1, InputArray H2, int method ); + +//! compares two histograms stored in sparse arrays +CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method ); + +//! normalizes the grayscale image brightness and contrast by normalizing its histogram +CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst ); + +class CV_EXPORTS_W CLAHE : public Algorithm +{ +public: + CV_WRAP virtual void apply(InputArray src, OutputArray dst) = 0; + + CV_WRAP virtual void setClipLimit(double clipLimit) = 0; + CV_WRAP virtual double getClipLimit() const = 0; + + CV_WRAP virtual void setTilesGridSize(Size tileGridSize) = 0; + CV_WRAP virtual Size getTilesGridSize() const = 0; + + CV_WRAP virtual void collectGarbage() = 0; +}; +CV_EXPORTS_W Ptr<CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8)); + +CV_EXPORTS float EMD( InputArray signature1, InputArray signature2, + int distType, InputArray cost=noArray(), + float* lowerBound=0, OutputArray flow=noArray() ); + +//! segments the image using watershed algorithm +CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers ); + +//! filters image using meanshift algorithm +CV_EXPORTS_W void pyrMeanShiftFiltering( InputArray src, OutputArray dst, + double sp, double sr, int maxLevel=1, + TermCriteria termcrit=TermCriteria( + TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) ); + +//! class of the pixel in GrabCut algorithm +enum +{ + GC_BGD = 0, //!< background + GC_FGD = 1, //!< foreground + GC_PR_BGD = 2, //!< most probably background + GC_PR_FGD = 3 //!< most probably foreground +}; + +//! GrabCut algorithm flags +enum +{ + GC_INIT_WITH_RECT = 0, + GC_INIT_WITH_MASK = 1, + GC_EVAL = 2 +}; + +//! segments the image using GrabCut algorithm +CV_EXPORTS_W void grabCut( InputArray img, InputOutputArray mask, Rect rect, + InputOutputArray bgdModel, InputOutputArray fgdModel, + int iterCount, int mode = GC_EVAL ); + +enum +{ + DIST_LABEL_CCOMP = 0, + DIST_LABEL_PIXEL = 1 +}; + +//! builds the discrete Voronoi diagram +CV_EXPORTS_AS(distanceTransformWithLabels) void distanceTransform( InputArray src, OutputArray dst, + OutputArray labels, int distanceType, int maskSize, + int labelType=DIST_LABEL_CCOMP ); + +//! computes the distance transform map +CV_EXPORTS_W void distanceTransform( InputArray src, OutputArray dst, + int distanceType, int maskSize ); + +enum { FLOODFILL_FIXED_RANGE = 1 << 16, FLOODFILL_MASK_ONLY = 1 << 17 }; + +//! fills the semi-uniform image region starting from the specified seed point +CV_EXPORTS int floodFill( InputOutputArray image, + Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0, + Scalar loDiff=Scalar(), Scalar upDiff=Scalar(), + int flags=4 ); + +//! fills the semi-uniform image region and/or the mask starting from the specified seed point +CV_EXPORTS_W int floodFill( InputOutputArray image, InputOutputArray mask, + Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0, + Scalar loDiff=Scalar(), Scalar upDiff=Scalar(), + int flags=4 ); + + +enum +{ + COLOR_BGR2BGRA =0, + COLOR_RGB2RGBA =COLOR_BGR2BGRA, + + COLOR_BGRA2BGR =1, + COLOR_RGBA2RGB =COLOR_BGRA2BGR, + + COLOR_BGR2RGBA =2, + COLOR_RGB2BGRA =COLOR_BGR2RGBA, + + COLOR_RGBA2BGR =3, + COLOR_BGRA2RGB =COLOR_RGBA2BGR, + + COLOR_BGR2RGB =4, + COLOR_RGB2BGR =COLOR_BGR2RGB, + + COLOR_BGRA2RGBA =5, + COLOR_RGBA2BGRA =COLOR_BGRA2RGBA, + + COLOR_BGR2GRAY =6, + COLOR_RGB2GRAY =7, + COLOR_GRAY2BGR =8, + COLOR_GRAY2RGB =COLOR_GRAY2BGR, + COLOR_GRAY2BGRA =9, + COLOR_GRAY2RGBA =COLOR_GRAY2BGRA, + COLOR_BGRA2GRAY =10, + COLOR_RGBA2GRAY =11, + + COLOR_BGR2BGR565 =12, + COLOR_RGB2BGR565 =13, + COLOR_BGR5652BGR =14, + COLOR_BGR5652RGB =15, + COLOR_BGRA2BGR565 =16, + COLOR_RGBA2BGR565 =17, + COLOR_BGR5652BGRA =18, + COLOR_BGR5652RGBA =19, + + COLOR_GRAY2BGR565 =20, + COLOR_BGR5652GRAY =21, + + COLOR_BGR2BGR555 =22, + COLOR_RGB2BGR555 =23, + COLOR_BGR5552BGR =24, + COLOR_BGR5552RGB =25, + COLOR_BGRA2BGR555 =26, + COLOR_RGBA2BGR555 =27, + COLOR_BGR5552BGRA =28, + COLOR_BGR5552RGBA =29, + + COLOR_GRAY2BGR555 =30, + COLOR_BGR5552GRAY =31, + + COLOR_BGR2XYZ =32, + COLOR_RGB2XYZ =33, + COLOR_XYZ2BGR =34, + COLOR_XYZ2RGB =35, + + COLOR_BGR2YCrCb =36, + COLOR_RGB2YCrCb =37, + COLOR_YCrCb2BGR =38, + COLOR_YCrCb2RGB =39, + + COLOR_BGR2HSV =40, + COLOR_RGB2HSV =41, + + COLOR_BGR2Lab =44, + COLOR_RGB2Lab =45, + + COLOR_BayerBG2BGR =46, + COLOR_BayerGB2BGR =47, + COLOR_BayerRG2BGR =48, + COLOR_BayerGR2BGR =49, + + COLOR_BayerBG2RGB =COLOR_BayerRG2BGR, + COLOR_BayerGB2RGB =COLOR_BayerGR2BGR, + COLOR_BayerRG2RGB =COLOR_BayerBG2BGR, + COLOR_BayerGR2RGB =COLOR_BayerGB2BGR, + + COLOR_BGR2Luv =50, + COLOR_RGB2Luv =51, + COLOR_BGR2HLS =52, + COLOR_RGB2HLS =53, + + COLOR_HSV2BGR =54, + COLOR_HSV2RGB =55, + + COLOR_Lab2BGR =56, + COLOR_Lab2RGB =57, + COLOR_Luv2BGR =58, + COLOR_Luv2RGB =59, + COLOR_HLS2BGR =60, + COLOR_HLS2RGB =61, + + COLOR_BayerBG2BGR_VNG =62, + COLOR_BayerGB2BGR_VNG =63, + COLOR_BayerRG2BGR_VNG =64, + COLOR_BayerGR2BGR_VNG =65, + + COLOR_BayerBG2RGB_VNG =COLOR_BayerRG2BGR_VNG, + COLOR_BayerGB2RGB_VNG =COLOR_BayerGR2BGR_VNG, + COLOR_BayerRG2RGB_VNG =COLOR_BayerBG2BGR_VNG, + COLOR_BayerGR2RGB_VNG =COLOR_BayerGB2BGR_VNG, + + COLOR_BGR2HSV_FULL = 66, + COLOR_RGB2HSV_FULL = 67, + COLOR_BGR2HLS_FULL = 68, + COLOR_RGB2HLS_FULL = 69, + + COLOR_HSV2BGR_FULL = 70, + COLOR_HSV2RGB_FULL = 71, + COLOR_HLS2BGR_FULL = 72, + COLOR_HLS2RGB_FULL = 73, + + COLOR_LBGR2Lab = 74, + COLOR_LRGB2Lab = 75, + COLOR_LBGR2Luv = 76, + COLOR_LRGB2Luv = 77, + + COLOR_Lab2LBGR = 78, + COLOR_Lab2LRGB = 79, + COLOR_Luv2LBGR = 80, + COLOR_Luv2LRGB = 81, + + COLOR_BGR2YUV = 82, + COLOR_RGB2YUV = 83, + COLOR_YUV2BGR = 84, + COLOR_YUV2RGB = 85, + + COLOR_BayerBG2GRAY = 86, + COLOR_BayerGB2GRAY = 87, + COLOR_BayerRG2GRAY = 88, + COLOR_BayerGR2GRAY = 89, + + //YUV 4:2:0 formats family + COLOR_YUV2RGB_NV12 = 90, + COLOR_YUV2BGR_NV12 = 91, + COLOR_YUV2RGB_NV21 = 92, + COLOR_YUV2BGR_NV21 = 93, + COLOR_YUV420sp2RGB = COLOR_YUV2RGB_NV21, + COLOR_YUV420sp2BGR = COLOR_YUV2BGR_NV21, + + COLOR_YUV2RGBA_NV12 = 94, + COLOR_YUV2BGRA_NV12 = 95, + COLOR_YUV2RGBA_NV21 = 96, + COLOR_YUV2BGRA_NV21 = 97, + COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21, + COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21, + + COLOR_YUV2RGB_YV12 = 98, + COLOR_YUV2BGR_YV12 = 99, + COLOR_YUV2RGB_IYUV = 100, + COLOR_YUV2BGR_IYUV = 101, + COLOR_YUV2RGB_I420 = COLOR_YUV2RGB_IYUV, + COLOR_YUV2BGR_I420 = COLOR_YUV2BGR_IYUV, + COLOR_YUV420p2RGB = COLOR_YUV2RGB_YV12, + COLOR_YUV420p2BGR = COLOR_YUV2BGR_YV12, + + COLOR_YUV2RGBA_YV12 = 102, + COLOR_YUV2BGRA_YV12 = 103, + COLOR_YUV2RGBA_IYUV = 104, + COLOR_YUV2BGRA_IYUV = 105, + COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV, + COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV, + COLOR_YUV420p2RGBA = COLOR_YUV2RGBA_YV12, + COLOR_YUV420p2BGRA = COLOR_YUV2BGRA_YV12, + + COLOR_YUV2GRAY_420 = 106, + COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420, + COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420, + COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420, + COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420, + COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420, + COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420, + COLOR_YUV420p2GRAY = COLOR_YUV2GRAY_420, + + //YUV 4:2:2 formats family + COLOR_YUV2RGB_UYVY = 107, + COLOR_YUV2BGR_UYVY = 108, + //COLOR_YUV2RGB_VYUY = 109, + //COLOR_YUV2BGR_VYUY = 110, + COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY, + COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY, + COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY, + COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY, + + COLOR_YUV2RGBA_UYVY = 111, + COLOR_YUV2BGRA_UYVY = 112, + //COLOR_YUV2RGBA_VYUY = 113, + //COLOR_YUV2BGRA_VYUY = 114, + COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY, + COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY, + COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY, + COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY, + + COLOR_YUV2RGB_YUY2 = 115, + COLOR_YUV2BGR_YUY2 = 116, + COLOR_YUV2RGB_YVYU = 117, + COLOR_YUV2BGR_YVYU = 118, + COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2, + COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2, + COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2, + COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2, + + COLOR_YUV2RGBA_YUY2 = 119, + COLOR_YUV2BGRA_YUY2 = 120, + COLOR_YUV2RGBA_YVYU = 121, + COLOR_YUV2BGRA_YVYU = 122, + COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2, + COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2, + COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2, + COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2, + + COLOR_YUV2GRAY_UYVY = 123, + COLOR_YUV2GRAY_YUY2 = 124, + //COLOR_YUV2GRAY_VYUY = COLOR_YUV2GRAY_UYVY, + COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY, + COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY, + COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2, + COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2, + COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2, + + // alpha premultiplication + COLOR_RGBA2mRGBA = 125, + COLOR_mRGBA2RGBA = 126, + + COLOR_RGB2YUV_I420 = 127, + COLOR_BGR2YUV_I420 = 128, + COLOR_RGB2YUV_IYUV = COLOR_RGB2YUV_I420, + COLOR_BGR2YUV_IYUV = COLOR_BGR2YUV_I420, + + COLOR_RGBA2YUV_I420 = 129, + COLOR_BGRA2YUV_I420 = 130, + COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420, + COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420, + COLOR_RGB2YUV_YV12 = 131, + COLOR_BGR2YUV_YV12 = 132, + COLOR_RGBA2YUV_YV12 = 133, + COLOR_BGRA2YUV_YV12 = 134, + + COLOR_COLORCVT_MAX = 135 +}; + + +//! converts image from one color space to another +CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn=0 ); + +//! raster image moments +class CV_EXPORTS_W_MAP Moments +{ +public: + //! the default constructor + Moments(); + //! the full constructor + Moments(double m00, double m10, double m01, double m20, double m11, + double m02, double m30, double m21, double m12, double m03 ); + //! the conversion from CvMoments + Moments( const CvMoments& moments ); + //! the conversion to CvMoments + operator CvMoments() const; + + //! spatial moments + CV_PROP_RW double m00, m10, m01, m20, m11, m02, m30, m21, m12, m03; + //! central moments + CV_PROP_RW double mu20, mu11, mu02, mu30, mu21, mu12, mu03; + //! central normalized moments + CV_PROP_RW double nu20, nu11, nu02, nu30, nu21, nu12, nu03; +}; + +//! computes moments of the rasterized shape or a vector of points +CV_EXPORTS_W Moments moments( InputArray array, bool binaryImage=false ); + +//! computes 7 Hu invariants from the moments +CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] ); +CV_EXPORTS_W void HuMoments( const Moments& m, CV_OUT OutputArray hu ); + +//! type of the template matching operation +enum { TM_SQDIFF=0, TM_SQDIFF_NORMED=1, TM_CCORR=2, TM_CCORR_NORMED=3, TM_CCOEFF=4, TM_CCOEFF_NORMED=5 }; + +//! computes the proximity map for the raster template and the image where the template is searched for +CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ, + OutputArray result, int method ); + +//! mode of the contour retrieval algorithm +enum +{ + RETR_EXTERNAL=CV_RETR_EXTERNAL, //!< retrieve only the most external (top-level) contours + RETR_LIST=CV_RETR_LIST, //!< retrieve all the contours without any hierarchical information + RETR_CCOMP=CV_RETR_CCOMP, //!< retrieve the connected components (that can possibly be nested) + RETR_TREE=CV_RETR_TREE, //!< retrieve all the contours and the whole hierarchy + RETR_FLOODFILL=CV_RETR_FLOODFILL +}; + +//! the contour approximation algorithm +enum +{ + CHAIN_APPROX_NONE=CV_CHAIN_APPROX_NONE, + CHAIN_APPROX_SIMPLE=CV_CHAIN_APPROX_SIMPLE, + CHAIN_APPROX_TC89_L1=CV_CHAIN_APPROX_TC89_L1, + CHAIN_APPROX_TC89_KCOS=CV_CHAIN_APPROX_TC89_KCOS +}; + +//! retrieves contours and the hierarchical information from black-n-white image. +CV_EXPORTS_W void findContours( InputOutputArray image, OutputArrayOfArrays contours, + OutputArray hierarchy, int mode, + int method, Point offset=Point()); + +//! retrieves contours from black-n-white image. +CV_EXPORTS void findContours( InputOutputArray image, OutputArrayOfArrays contours, + int mode, int method, Point offset=Point()); + +//! draws contours in the image +CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours, + int contourIdx, const Scalar& color, + int thickness=1, int lineType=8, + InputArray hierarchy=noArray(), + int maxLevel=INT_MAX, Point offset=Point() ); + +//! approximates contour or a curve using Douglas-Peucker algorithm +CV_EXPORTS_W void approxPolyDP( InputArray curve, + OutputArray approxCurve, + double epsilon, bool closed ); + +//! computes the contour perimeter (closed=true) or a curve length +CV_EXPORTS_W double arcLength( InputArray curve, bool closed ); +//! computes the bounding rectangle for a contour +CV_EXPORTS_W Rect boundingRect( InputArray points ); +//! computes the contour area +CV_EXPORTS_W double contourArea( InputArray contour, bool oriented=false ); +//! computes the minimal rotated rectangle for a set of points +CV_EXPORTS_W RotatedRect minAreaRect( InputArray points ); +//! computes the minimal enclosing circle for a set of points +CV_EXPORTS_W void minEnclosingCircle( InputArray points, + CV_OUT Point2f& center, CV_OUT float& radius ); +//! matches two contours using one of the available algorithms +CV_EXPORTS_W double matchShapes( InputArray contour1, InputArray contour2, + int method, double parameter ); +//! computes convex hull for a set of 2D points. +CV_EXPORTS_W void convexHull( InputArray points, OutputArray hull, + bool clockwise=false, bool returnPoints=true ); +//! computes the contour convexity defects +CV_EXPORTS_W void convexityDefects( InputArray contour, InputArray convexhull, OutputArray convexityDefects ); + +//! returns true if the contour is convex. Does not support contours with self-intersection +CV_EXPORTS_W bool isContourConvex( InputArray contour ); + +//! finds intersection of two convex polygons +CV_EXPORTS_W float intersectConvexConvex( InputArray _p1, InputArray _p2, + OutputArray _p12, bool handleNested=true ); + +//! fits ellipse to the set of 2D points +CV_EXPORTS_W RotatedRect fitEllipse( InputArray points ); + +//! fits line to the set of 2D points using M-estimator algorithm +CV_EXPORTS_W void fitLine( InputArray points, OutputArray line, int distType, + double param, double reps, double aeps ); +//! checks if the point is inside the contour. Optionally computes the signed distance from the point to the contour boundary +CV_EXPORTS_W double pointPolygonTest( InputArray contour, Point2f pt, bool measureDist ); + + +class CV_EXPORTS_W Subdiv2D +{ +public: + enum + { + PTLOC_ERROR = -2, + PTLOC_OUTSIDE_RECT = -1, + PTLOC_INSIDE = 0, + PTLOC_VERTEX = 1, + PTLOC_ON_EDGE = 2 + }; + + enum + { + NEXT_AROUND_ORG = 0x00, + NEXT_AROUND_DST = 0x22, + PREV_AROUND_ORG = 0x11, + PREV_AROUND_DST = 0x33, + NEXT_AROUND_LEFT = 0x13, + NEXT_AROUND_RIGHT = 0x31, + PREV_AROUND_LEFT = 0x20, + PREV_AROUND_RIGHT = 0x02 + }; + + CV_WRAP Subdiv2D(); + CV_WRAP Subdiv2D(Rect rect); + CV_WRAP void initDelaunay(Rect rect); + + CV_WRAP int insert(Point2f pt); + CV_WRAP void insert(const vector<Point2f>& ptvec); + CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex); + + CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt=0); + CV_WRAP void getEdgeList(CV_OUT vector<Vec4f>& edgeList) const; + CV_WRAP void getTriangleList(CV_OUT vector<Vec6f>& triangleList) const; + CV_WRAP void getVoronoiFacetList(const vector<int>& idx, CV_OUT vector<vector<Point2f> >& facetList, + CV_OUT vector<Point2f>& facetCenters); + + CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge=0) const; + + CV_WRAP int getEdge( int edge, int nextEdgeType ) const; + CV_WRAP int nextEdge(int edge) const; + CV_WRAP int rotateEdge(int edge, int rotate) const; + CV_WRAP int symEdge(int edge) const; + CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt=0) const; + CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt=0) const; + +protected: + int newEdge(); + void deleteEdge(int edge); + int newPoint(Point2f pt, bool isvirtual, int firstEdge=0); + void deletePoint(int vtx); + void setEdgePoints( int edge, int orgPt, int dstPt ); + void splice( int edgeA, int edgeB ); + int connectEdges( int edgeA, int edgeB ); + void swapEdges( int edge ); + int isRightOf(Point2f pt, int edge) const; + void calcVoronoi(); + void clearVoronoi(); + void checkSubdiv() const; + + struct CV_EXPORTS Vertex + { + Vertex(); + Vertex(Point2f pt, bool _isvirtual, int _firstEdge=0); + bool isvirtual() const; + bool isfree() const; + int firstEdge; + int type; + Point2f pt; + }; + struct CV_EXPORTS QuadEdge + { + QuadEdge(); + QuadEdge(int edgeidx); + bool isfree() const; + int next[4]; + int pt[4]; + }; + + vector<Vertex> vtx; + vector<QuadEdge> qedges; + int freeQEdge; + int freePoint; + bool validGeometry; + + int recentEdge; + Point2f topLeft; + Point2f bottomRight; +}; + +} + +#endif /* __cplusplus */ + +#endif + +/* End of file. */ |