diff options
author | Brijeshcr | 2017-07-06 15:49:18 +0530 |
---|---|---|
committer | GitHub | 2017-07-06 15:49:18 +0530 |
commit | 850c0ff1ca5cd660b76d0568a215bab0547312ad (patch) | |
tree | 26fc9679644561759e8a2c4080059d30b70a3105 /2.3-1/thirdparty/includes/GSL/gsl/gsl_complex_math.h | |
parent | a7eeecce4c7c39ea52a2d434815c574a2c42730d (diff) | |
parent | c600ebcb67961fe6007ba41fd5ad987da3af7f6e (diff) | |
download | Scilab2C-850c0ff1ca5cd660b76d0568a215bab0547312ad.tar.gz Scilab2C-850c0ff1ca5cd660b76d0568a215bab0547312ad.tar.bz2 Scilab2C-850c0ff1ca5cd660b76d0568a215bab0547312ad.zip |
Merge pull request #4 from FOSSEE/revert-3-master
Revert "LinearAlgebra Function Added"
Diffstat (limited to '2.3-1/thirdparty/includes/GSL/gsl/gsl_complex_math.h')
-rw-r--r-- | 2.3-1/thirdparty/includes/GSL/gsl/gsl_complex_math.h | 142 |
1 files changed, 142 insertions, 0 deletions
diff --git a/2.3-1/thirdparty/includes/GSL/gsl/gsl_complex_math.h b/2.3-1/thirdparty/includes/GSL/gsl/gsl_complex_math.h new file mode 100644 index 00000000..ad8d076a --- /dev/null +++ b/2.3-1/thirdparty/includes/GSL/gsl/gsl_complex_math.h @@ -0,0 +1,142 @@ +/* complex/gsl_complex_math.h + * + * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004, 2007 Jorma Olavi Tähtinen, Brian Gough + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 3 of the License, or (at + * your option) any later version. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. + */ + +#ifndef __GSL_COMPLEX_MATH_H__ +#define __GSL_COMPLEX_MATH_H__ +#include <gsl/gsl_inline.h> +#include <gsl/gsl_complex.h> + +#undef __BEGIN_DECLS +#undef __END_DECLS +#ifdef __cplusplus +#define __BEGIN_DECLS extern "C" { +#define __END_DECLS } +#else +#define __BEGIN_DECLS /* empty */ +#define __END_DECLS /* empty */ +#endif + +__BEGIN_DECLS + +/* Complex numbers */ + +gsl_complex gsl_complex_polar (double r, double theta); /* r= r e^(i theta) */ + +INLINE_DECL gsl_complex gsl_complex_rect (double x, double y); /* r= real+i*imag */ + +#ifdef HAVE_INLINE +INLINE_FUN gsl_complex +gsl_complex_rect (double x, double y) +{ /* return z = x + i y */ + gsl_complex z; + GSL_SET_COMPLEX (&z, x, y); + return z; +} +#endif + +#define GSL_COMPLEX_ONE (gsl_complex_rect(1.0,0.0)) +#define GSL_COMPLEX_ZERO (gsl_complex_rect(0.0,0.0)) +#define GSL_COMPLEX_NEGONE (gsl_complex_rect(-1.0,0.0)) + +/* Properties of complex numbers */ + +double gsl_complex_arg (gsl_complex z); /* return arg(z), -pi< arg(z) <=+pi */ +double gsl_complex_abs (gsl_complex z); /* return |z| */ +double gsl_complex_abs2 (gsl_complex z); /* return |z|^2 */ +double gsl_complex_logabs (gsl_complex z); /* return log|z| */ + +/* Complex arithmetic operators */ + +gsl_complex gsl_complex_add (gsl_complex a, gsl_complex b); /* r=a+b */ +gsl_complex gsl_complex_sub (gsl_complex a, gsl_complex b); /* r=a-b */ +gsl_complex gsl_complex_mul (gsl_complex a, gsl_complex b); /* r=a*b */ +gsl_complex gsl_complex_div (gsl_complex a, gsl_complex b); /* r=a/b */ + +gsl_complex gsl_complex_add_real (gsl_complex a, double x); /* r=a+x */ +gsl_complex gsl_complex_sub_real (gsl_complex a, double x); /* r=a-x */ +gsl_complex gsl_complex_mul_real (gsl_complex a, double x); /* r=a*x */ +gsl_complex gsl_complex_div_real (gsl_complex a, double x); /* r=a/x */ + +gsl_complex gsl_complex_add_imag (gsl_complex a, double y); /* r=a+iy */ +gsl_complex gsl_complex_sub_imag (gsl_complex a, double y); /* r=a-iy */ +gsl_complex gsl_complex_mul_imag (gsl_complex a, double y); /* r=a*iy */ +gsl_complex gsl_complex_div_imag (gsl_complex a, double y); /* r=a/iy */ + +gsl_complex gsl_complex_conjugate (gsl_complex z); /* r=conj(z) */ +gsl_complex gsl_complex_inverse (gsl_complex a); /* r=1/a */ +gsl_complex gsl_complex_negative (gsl_complex a); /* r=-a */ + +/* Elementary Complex Functions */ + +gsl_complex gsl_complex_sqrt (gsl_complex z); /* r=sqrt(z) */ +gsl_complex gsl_complex_sqrt_real (double x); /* r=sqrt(x) (x<0 ok) */ + +gsl_complex gsl_complex_pow (gsl_complex a, gsl_complex b); /* r=a^b */ +gsl_complex gsl_complex_pow_real (gsl_complex a, double b); /* r=a^b */ + +gsl_complex gsl_complex_exp (gsl_complex a); /* r=exp(a) */ +gsl_complex gsl_complex_log (gsl_complex a); /* r=log(a) (base e) */ +gsl_complex gsl_complex_log10 (gsl_complex a); /* r=log10(a) (base 10) */ +gsl_complex gsl_complex_log_b (gsl_complex a, gsl_complex b); /* r=log_b(a) (base=b) */ + +/* Complex Trigonometric Functions */ + +gsl_complex gsl_complex_sin (gsl_complex a); /* r=sin(a) */ +gsl_complex gsl_complex_cos (gsl_complex a); /* r=cos(a) */ +gsl_complex gsl_complex_sec (gsl_complex a); /* r=sec(a) */ +gsl_complex gsl_complex_csc (gsl_complex a); /* r=csc(a) */ +gsl_complex gsl_complex_tan (gsl_complex a); /* r=tan(a) */ +gsl_complex gsl_complex_cot (gsl_complex a); /* r=cot(a) */ + +/* Inverse Complex Trigonometric Functions */ + +gsl_complex gsl_complex_arcsin (gsl_complex a); /* r=arcsin(a) */ +gsl_complex gsl_complex_arcsin_real (double a); /* r=arcsin(a) */ +gsl_complex gsl_complex_arccos (gsl_complex a); /* r=arccos(a) */ +gsl_complex gsl_complex_arccos_real (double a); /* r=arccos(a) */ +gsl_complex gsl_complex_arcsec (gsl_complex a); /* r=arcsec(a) */ +gsl_complex gsl_complex_arcsec_real (double a); /* r=arcsec(a) */ +gsl_complex gsl_complex_arccsc (gsl_complex a); /* r=arccsc(a) */ +gsl_complex gsl_complex_arccsc_real (double a); /* r=arccsc(a) */ +gsl_complex gsl_complex_arctan (gsl_complex a); /* r=arctan(a) */ +gsl_complex gsl_complex_arccot (gsl_complex a); /* r=arccot(a) */ + +/* Complex Hyperbolic Functions */ + +gsl_complex gsl_complex_sinh (gsl_complex a); /* r=sinh(a) */ +gsl_complex gsl_complex_cosh (gsl_complex a); /* r=coshh(a) */ +gsl_complex gsl_complex_sech (gsl_complex a); /* r=sech(a) */ +gsl_complex gsl_complex_csch (gsl_complex a); /* r=csch(a) */ +gsl_complex gsl_complex_tanh (gsl_complex a); /* r=tanh(a) */ +gsl_complex gsl_complex_coth (gsl_complex a); /* r=coth(a) */ + +/* Inverse Complex Hyperbolic Functions */ + +gsl_complex gsl_complex_arcsinh (gsl_complex a); /* r=arcsinh(a) */ +gsl_complex gsl_complex_arccosh (gsl_complex a); /* r=arccosh(a) */ +gsl_complex gsl_complex_arccosh_real (double a); /* r=arccosh(a) */ +gsl_complex gsl_complex_arcsech (gsl_complex a); /* r=arcsech(a) */ +gsl_complex gsl_complex_arccsch (gsl_complex a); /* r=arccsch(a) */ +gsl_complex gsl_complex_arctanh (gsl_complex a); /* r=arctanh(a) */ +gsl_complex gsl_complex_arctanh_real (double a); /* r=arctanh(a) */ +gsl_complex gsl_complex_arccoth (gsl_complex a); /* r=arccoth(a) */ + +__END_DECLS + +#endif /* __GSL_COMPLEX_MATH_H__ */ |