summaryrefslogtreecommitdiff
path: root/2.3-1/thirdparty/includes/GSL/gsl/gsl_complex_math.h
diff options
context:
space:
mode:
authorSandeep Gupta2017-06-21 12:42:02 +0530
committerSandeep Gupta2017-06-21 12:42:02 +0530
commit33e4ef72e7f712eb34a0a87e7b45fcca7d08393c (patch)
treef504c068fe6763f6cf32735e9107cc357c2655a7 /2.3-1/thirdparty/includes/GSL/gsl/gsl_complex_math.h
parentbbd59785a0607149aca4b809d6e43a4b64e2d797 (diff)
parent0051253bc224286c118c080c79eaed5bf611bd35 (diff)
downloadScilab2C-33e4ef72e7f712eb34a0a87e7b45fcca7d08393c.tar.gz
Scilab2C-33e4ef72e7f712eb34a0a87e7b45fcca7d08393c.tar.bz2
Scilab2C-33e4ef72e7f712eb34a0a87e7b45fcca7d08393c.zip
Updated - Linear Algebra
Diffstat (limited to '2.3-1/thirdparty/includes/GSL/gsl/gsl_complex_math.h')
-rw-r--r--2.3-1/thirdparty/includes/GSL/gsl/gsl_complex_math.h142
1 files changed, 142 insertions, 0 deletions
diff --git a/2.3-1/thirdparty/includes/GSL/gsl/gsl_complex_math.h b/2.3-1/thirdparty/includes/GSL/gsl/gsl_complex_math.h
new file mode 100644
index 00000000..ad8d076a
--- /dev/null
+++ b/2.3-1/thirdparty/includes/GSL/gsl/gsl_complex_math.h
@@ -0,0 +1,142 @@
+/* complex/gsl_complex_math.h
+ *
+ * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004, 2007 Jorma Olavi Tähtinen, Brian Gough
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 3 of the License, or (at
+ * your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#ifndef __GSL_COMPLEX_MATH_H__
+#define __GSL_COMPLEX_MATH_H__
+#include <gsl/gsl_inline.h>
+#include <gsl/gsl_complex.h>
+
+#undef __BEGIN_DECLS
+#undef __END_DECLS
+#ifdef __cplusplus
+#define __BEGIN_DECLS extern "C" {
+#define __END_DECLS }
+#else
+#define __BEGIN_DECLS /* empty */
+#define __END_DECLS /* empty */
+#endif
+
+__BEGIN_DECLS
+
+/* Complex numbers */
+
+gsl_complex gsl_complex_polar (double r, double theta); /* r= r e^(i theta) */
+
+INLINE_DECL gsl_complex gsl_complex_rect (double x, double y); /* r= real+i*imag */
+
+#ifdef HAVE_INLINE
+INLINE_FUN gsl_complex
+gsl_complex_rect (double x, double y)
+{ /* return z = x + i y */
+ gsl_complex z;
+ GSL_SET_COMPLEX (&z, x, y);
+ return z;
+}
+#endif
+
+#define GSL_COMPLEX_ONE (gsl_complex_rect(1.0,0.0))
+#define GSL_COMPLEX_ZERO (gsl_complex_rect(0.0,0.0))
+#define GSL_COMPLEX_NEGONE (gsl_complex_rect(-1.0,0.0))
+
+/* Properties of complex numbers */
+
+double gsl_complex_arg (gsl_complex z); /* return arg(z), -pi< arg(z) <=+pi */
+double gsl_complex_abs (gsl_complex z); /* return |z| */
+double gsl_complex_abs2 (gsl_complex z); /* return |z|^2 */
+double gsl_complex_logabs (gsl_complex z); /* return log|z| */
+
+/* Complex arithmetic operators */
+
+gsl_complex gsl_complex_add (gsl_complex a, gsl_complex b); /* r=a+b */
+gsl_complex gsl_complex_sub (gsl_complex a, gsl_complex b); /* r=a-b */
+gsl_complex gsl_complex_mul (gsl_complex a, gsl_complex b); /* r=a*b */
+gsl_complex gsl_complex_div (gsl_complex a, gsl_complex b); /* r=a/b */
+
+gsl_complex gsl_complex_add_real (gsl_complex a, double x); /* r=a+x */
+gsl_complex gsl_complex_sub_real (gsl_complex a, double x); /* r=a-x */
+gsl_complex gsl_complex_mul_real (gsl_complex a, double x); /* r=a*x */
+gsl_complex gsl_complex_div_real (gsl_complex a, double x); /* r=a/x */
+
+gsl_complex gsl_complex_add_imag (gsl_complex a, double y); /* r=a+iy */
+gsl_complex gsl_complex_sub_imag (gsl_complex a, double y); /* r=a-iy */
+gsl_complex gsl_complex_mul_imag (gsl_complex a, double y); /* r=a*iy */
+gsl_complex gsl_complex_div_imag (gsl_complex a, double y); /* r=a/iy */
+
+gsl_complex gsl_complex_conjugate (gsl_complex z); /* r=conj(z) */
+gsl_complex gsl_complex_inverse (gsl_complex a); /* r=1/a */
+gsl_complex gsl_complex_negative (gsl_complex a); /* r=-a */
+
+/* Elementary Complex Functions */
+
+gsl_complex gsl_complex_sqrt (gsl_complex z); /* r=sqrt(z) */
+gsl_complex gsl_complex_sqrt_real (double x); /* r=sqrt(x) (x<0 ok) */
+
+gsl_complex gsl_complex_pow (gsl_complex a, gsl_complex b); /* r=a^b */
+gsl_complex gsl_complex_pow_real (gsl_complex a, double b); /* r=a^b */
+
+gsl_complex gsl_complex_exp (gsl_complex a); /* r=exp(a) */
+gsl_complex gsl_complex_log (gsl_complex a); /* r=log(a) (base e) */
+gsl_complex gsl_complex_log10 (gsl_complex a); /* r=log10(a) (base 10) */
+gsl_complex gsl_complex_log_b (gsl_complex a, gsl_complex b); /* r=log_b(a) (base=b) */
+
+/* Complex Trigonometric Functions */
+
+gsl_complex gsl_complex_sin (gsl_complex a); /* r=sin(a) */
+gsl_complex gsl_complex_cos (gsl_complex a); /* r=cos(a) */
+gsl_complex gsl_complex_sec (gsl_complex a); /* r=sec(a) */
+gsl_complex gsl_complex_csc (gsl_complex a); /* r=csc(a) */
+gsl_complex gsl_complex_tan (gsl_complex a); /* r=tan(a) */
+gsl_complex gsl_complex_cot (gsl_complex a); /* r=cot(a) */
+
+/* Inverse Complex Trigonometric Functions */
+
+gsl_complex gsl_complex_arcsin (gsl_complex a); /* r=arcsin(a) */
+gsl_complex gsl_complex_arcsin_real (double a); /* r=arcsin(a) */
+gsl_complex gsl_complex_arccos (gsl_complex a); /* r=arccos(a) */
+gsl_complex gsl_complex_arccos_real (double a); /* r=arccos(a) */
+gsl_complex gsl_complex_arcsec (gsl_complex a); /* r=arcsec(a) */
+gsl_complex gsl_complex_arcsec_real (double a); /* r=arcsec(a) */
+gsl_complex gsl_complex_arccsc (gsl_complex a); /* r=arccsc(a) */
+gsl_complex gsl_complex_arccsc_real (double a); /* r=arccsc(a) */
+gsl_complex gsl_complex_arctan (gsl_complex a); /* r=arctan(a) */
+gsl_complex gsl_complex_arccot (gsl_complex a); /* r=arccot(a) */
+
+/* Complex Hyperbolic Functions */
+
+gsl_complex gsl_complex_sinh (gsl_complex a); /* r=sinh(a) */
+gsl_complex gsl_complex_cosh (gsl_complex a); /* r=coshh(a) */
+gsl_complex gsl_complex_sech (gsl_complex a); /* r=sech(a) */
+gsl_complex gsl_complex_csch (gsl_complex a); /* r=csch(a) */
+gsl_complex gsl_complex_tanh (gsl_complex a); /* r=tanh(a) */
+gsl_complex gsl_complex_coth (gsl_complex a); /* r=coth(a) */
+
+/* Inverse Complex Hyperbolic Functions */
+
+gsl_complex gsl_complex_arcsinh (gsl_complex a); /* r=arcsinh(a) */
+gsl_complex gsl_complex_arccosh (gsl_complex a); /* r=arccosh(a) */
+gsl_complex gsl_complex_arccosh_real (double a); /* r=arccosh(a) */
+gsl_complex gsl_complex_arcsech (gsl_complex a); /* r=arcsech(a) */
+gsl_complex gsl_complex_arccsch (gsl_complex a); /* r=arccsch(a) */
+gsl_complex gsl_complex_arctanh (gsl_complex a); /* r=arctanh(a) */
+gsl_complex gsl_complex_arctanh_real (double a); /* r=arctanh(a) */
+gsl_complex gsl_complex_arccoth (gsl_complex a); /* r=arccoth(a) */
+
+__END_DECLS
+
+#endif /* __GSL_COMPLEX_MATH_H__ */