summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/ztzrzf.f
diff options
context:
space:
mode:
authorSiddhesh Wani2015-05-25 14:46:31 +0530
committerSiddhesh Wani2015-05-25 14:46:31 +0530
commit6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26 (patch)
tree1b7bd89fdcfd01715713d8a15db471dc75a96bbf /2.3-1/src/fortran/lapack/ztzrzf.f
downloadScilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.gz
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.bz2
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.zip
Original Version
Diffstat (limited to '2.3-1/src/fortran/lapack/ztzrzf.f')
-rw-r--r--2.3-1/src/fortran/lapack/ztzrzf.f244
1 files changed, 244 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/ztzrzf.f b/2.3-1/src/fortran/lapack/ztzrzf.f
new file mode 100644
index 00000000..5c9c6543
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/ztzrzf.f
@@ -0,0 +1,244 @@
+ SUBROUTINE ZTZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LWORK, M, N
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZTZRZF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
+* to upper triangular form by means of unitary transformations.
+*
+* The upper trapezoidal matrix A is factored as
+*
+* A = ( R 0 ) * Z,
+*
+* where Z is an N-by-N unitary matrix and R is an M-by-M upper
+* triangular matrix.
+*
+* Arguments
+* =========
+*
+* M (input) INTEGER
+* The number of rows of the matrix A. M >= 0.
+*
+* N (input) INTEGER
+* The number of columns of the matrix A. N >= M.
+*
+* A (input/output) COMPLEX*16 array, dimension (LDA,N)
+* On entry, the leading M-by-N upper trapezoidal part of the
+* array A must contain the matrix to be factorized.
+* On exit, the leading M-by-M upper triangular part of A
+* contains the upper triangular matrix R, and elements M+1 to
+* N of the first M rows of A, with the array TAU, represent the
+* unitary matrix Z as a product of M elementary reflectors.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,M).
+*
+* TAU (output) COMPLEX*16 array, dimension (M)
+* The scalar factors of the elementary reflectors.
+*
+* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK. LWORK >= max(1,M).
+* For optimum performance LWORK >= M*NB, where NB is
+* the optimal blocksize.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+*
+* Further Details
+* ===============
+*
+* Based on contributions by
+* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
+*
+* The factorization is obtained by Householder's method. The kth
+* transformation matrix, Z( k ), which is used to introduce zeros into
+* the ( m - k + 1 )th row of A, is given in the form
+*
+* Z( k ) = ( I 0 ),
+* ( 0 T( k ) )
+*
+* where
+*
+* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ),
+* ( 0 )
+* ( z( k ) )
+*
+* tau is a scalar and z( k ) is an ( n - m ) element vector.
+* tau and z( k ) are chosen to annihilate the elements of the kth row
+* of X.
+*
+* The scalar tau is returned in the kth element of TAU and the vector
+* u( k ) in the kth row of A, such that the elements of z( k ) are
+* in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
+* the upper triangular part of A.
+*
+* Z is given by
+*
+* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX*16 ZERO
+ PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY
+ INTEGER I, IB, IWS, KI, KK, LDWORK, LWKOPT, M1, MU, NB,
+ $ NBMIN, NX
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA, ZLARZB, ZLARZT, ZLATRZ
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. External Functions ..
+ INTEGER ILAENV
+ EXTERNAL ILAENV
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ INFO = 0
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.M ) THEN
+ INFO = -2
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -4
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+ IF( M.EQ.0 .OR. M.EQ.N ) THEN
+ LWKOPT = 1
+ ELSE
+*
+* Determine the block size.
+*
+ NB = ILAENV( 1, 'ZGERQF', ' ', M, N, -1, -1 )
+ LWKOPT = M*NB
+ END IF
+ WORK( 1 ) = LWKOPT
+*
+ IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
+ INFO = -7
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZTZRZF', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( M.EQ.0 ) THEN
+ RETURN
+ ELSE IF( M.EQ.N ) THEN
+ DO 10 I = 1, N
+ TAU( I ) = ZERO
+ 10 CONTINUE
+ RETURN
+ END IF
+*
+ NBMIN = 2
+ NX = 1
+ IWS = M
+ IF( NB.GT.1 .AND. NB.LT.M ) THEN
+*
+* Determine when to cross over from blocked to unblocked code.
+*
+ NX = MAX( 0, ILAENV( 3, 'ZGERQF', ' ', M, N, -1, -1 ) )
+ IF( NX.LT.M ) THEN
+*
+* Determine if workspace is large enough for blocked code.
+*
+ LDWORK = M
+ IWS = LDWORK*NB
+ IF( LWORK.LT.IWS ) THEN
+*
+* Not enough workspace to use optimal NB: reduce NB and
+* determine the minimum value of NB.
+*
+ NB = LWORK / LDWORK
+ NBMIN = MAX( 2, ILAENV( 2, 'ZGERQF', ' ', M, N, -1,
+ $ -1 ) )
+ END IF
+ END IF
+ END IF
+*
+ IF( NB.GE.NBMIN .AND. NB.LT.M .AND. NX.LT.M ) THEN
+*
+* Use blocked code initially.
+* The last kk rows are handled by the block method.
+*
+ M1 = MIN( M+1, N )
+ KI = ( ( M-NX-1 ) / NB )*NB
+ KK = MIN( M, KI+NB )
+*
+ DO 20 I = M - KK + KI + 1, M - KK + 1, -NB
+ IB = MIN( M-I+1, NB )
+*
+* Compute the TZ factorization of the current block
+* A(i:i+ib-1,i:n)
+*
+ CALL ZLATRZ( IB, N-I+1, N-M, A( I, I ), LDA, TAU( I ),
+ $ WORK )
+ IF( I.GT.1 ) THEN
+*
+* Form the triangular factor of the block reflector
+* H = H(i+ib-1) . . . H(i+1) H(i)
+*
+ CALL ZLARZT( 'Backward', 'Rowwise', N-M, IB, A( I, M1 ),
+ $ LDA, TAU( I ), WORK, LDWORK )
+*
+* Apply H to A(1:i-1,i:n) from the right
+*
+ CALL ZLARZB( 'Right', 'No transpose', 'Backward',
+ $ 'Rowwise', I-1, N-I+1, IB, N-M, A( I, M1 ),
+ $ LDA, WORK, LDWORK, A( 1, I ), LDA,
+ $ WORK( IB+1 ), LDWORK )
+ END IF
+ 20 CONTINUE
+ MU = I + NB - 1
+ ELSE
+ MU = M
+ END IF
+*
+* Use unblocked code to factor the last or only block
+*
+ IF( MU.GT.0 )
+ $ CALL ZLATRZ( MU, N, N-M, A, LDA, TAU, WORK )
+*
+ WORK( 1 ) = LWKOPT
+*
+ RETURN
+*
+* End of ZTZRZF
+*
+ END