diff options
author | Ankit Raj | 2017-06-21 10:26:59 +0530 |
---|---|---|
committer | Ankit Raj | 2017-06-21 10:26:59 +0530 |
commit | a555820564d9f2e95ca8c97871339d3a5a2081c3 (patch) | |
tree | adb074b66a8e6750209880e6932305ce0a94c8bf /2.3-1/src/fortran/lapack/ztgsy2.f | |
download | Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.gz Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.bz2 Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.zip |
Updated Scilab2C
Diffstat (limited to '2.3-1/src/fortran/lapack/ztgsy2.f')
-rw-r--r-- | 2.3-1/src/fortran/lapack/ztgsy2.f | 361 |
1 files changed, 361 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/ztgsy2.f b/2.3-1/src/fortran/lapack/ztgsy2.f new file mode 100644 index 00000000..82ec5eb1 --- /dev/null +++ b/2.3-1/src/fortran/lapack/ztgsy2.f @@ -0,0 +1,361 @@ + SUBROUTINE ZTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, + $ LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL, + $ INFO ) +* +* -- LAPACK auxiliary routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + CHARACTER TRANS + INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N + DOUBLE PRECISION RDSCAL, RDSUM, SCALE +* .. +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ), + $ D( LDD, * ), E( LDE, * ), F( LDF, * ) +* .. +* +* Purpose +* ======= +* +* ZTGSY2 solves the generalized Sylvester equation +* +* A * R - L * B = scale * C (1) +* D * R - L * E = scale * F +* +* using Level 1 and 2 BLAS, where R and L are unknown M-by-N matrices, +* (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M, +* N-by-N and M-by-N, respectively. A, B, D and E are upper triangular +* (i.e., (A,D) and (B,E) in generalized Schur form). +* +* The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output +* scaling factor chosen to avoid overflow. +* +* In matrix notation solving equation (1) corresponds to solve +* Zx = scale * b, where Z is defined as +* +* Z = [ kron(In, A) -kron(B', Im) ] (2) +* [ kron(In, D) -kron(E', Im) ], +* +* Ik is the identity matrix of size k and X' is the transpose of X. +* kron(X, Y) is the Kronecker product between the matrices X and Y. +* +* If TRANS = 'C', y in the conjugate transposed system Z'y = scale*b +* is solved for, which is equivalent to solve for R and L in +* +* A' * R + D' * L = scale * C (3) +* R * B' + L * E' = scale * -F +* +* This case is used to compute an estimate of Dif[(A, D), (B, E)] = +* = sigma_min(Z) using reverse communicaton with ZLACON. +* +* ZTGSY2 also (IJOB >= 1) contributes to the computation in ZTGSYL +* of an upper bound on the separation between to matrix pairs. Then +* the input (A, D), (B, E) are sub-pencils of two matrix pairs in +* ZTGSYL. +* +* Arguments +* ========= +* +* TRANS (input) CHARACTER*1 +* = 'N', solve the generalized Sylvester equation (1). +* = 'T': solve the 'transposed' system (3). +* +* IJOB (input) INTEGER +* Specifies what kind of functionality to be performed. +* =0: solve (1) only. +* =1: A contribution from this subsystem to a Frobenius +* norm-based estimate of the separation between two matrix +* pairs is computed. (look ahead strategy is used). +* =2: A contribution from this subsystem to a Frobenius +* norm-based estimate of the separation between two matrix +* pairs is computed. (DGECON on sub-systems is used.) +* Not referenced if TRANS = 'T'. +* +* M (input) INTEGER +* On entry, M specifies the order of A and D, and the row +* dimension of C, F, R and L. +* +* N (input) INTEGER +* On entry, N specifies the order of B and E, and the column +* dimension of C, F, R and L. +* +* A (input) COMPLEX*16 array, dimension (LDA, M) +* On entry, A contains an upper triangular matrix. +* +* LDA (input) INTEGER +* The leading dimension of the matrix A. LDA >= max(1, M). +* +* B (input) COMPLEX*16 array, dimension (LDB, N) +* On entry, B contains an upper triangular matrix. +* +* LDB (input) INTEGER +* The leading dimension of the matrix B. LDB >= max(1, N). +* +* C (input/output) COMPLEX*16 array, dimension (LDC, N) +* On entry, C contains the right-hand-side of the first matrix +* equation in (1). +* On exit, if IJOB = 0, C has been overwritten by the solution +* R. +* +* LDC (input) INTEGER +* The leading dimension of the matrix C. LDC >= max(1, M). +* +* D (input) COMPLEX*16 array, dimension (LDD, M) +* On entry, D contains an upper triangular matrix. +* +* LDD (input) INTEGER +* The leading dimension of the matrix D. LDD >= max(1, M). +* +* E (input) COMPLEX*16 array, dimension (LDE, N) +* On entry, E contains an upper triangular matrix. +* +* LDE (input) INTEGER +* The leading dimension of the matrix E. LDE >= max(1, N). +* +* F (input/output) COMPLEX*16 array, dimension (LDF, N) +* On entry, F contains the right-hand-side of the second matrix +* equation in (1). +* On exit, if IJOB = 0, F has been overwritten by the solution +* L. +* +* LDF (input) INTEGER +* The leading dimension of the matrix F. LDF >= max(1, M). +* +* SCALE (output) DOUBLE PRECISION +* On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions +* R and L (C and F on entry) will hold the solutions to a +* slightly perturbed system but the input matrices A, B, D and +* E have not been changed. If SCALE = 0, R and L will hold the +* solutions to the homogeneous system with C = F = 0. +* Normally, SCALE = 1. +* +* RDSUM (input/output) DOUBLE PRECISION +* On entry, the sum of squares of computed contributions to +* the Dif-estimate under computation by ZTGSYL, where the +* scaling factor RDSCAL (see below) has been factored out. +* On exit, the corresponding sum of squares updated with the +* contributions from the current sub-system. +* If TRANS = 'T' RDSUM is not touched. +* NOTE: RDSUM only makes sense when ZTGSY2 is called by +* ZTGSYL. +* +* RDSCAL (input/output) DOUBLE PRECISION +* On entry, scaling factor used to prevent overflow in RDSUM. +* On exit, RDSCAL is updated w.r.t. the current contributions +* in RDSUM. +* If TRANS = 'T', RDSCAL is not touched. +* NOTE: RDSCAL only makes sense when ZTGSY2 is called by +* ZTGSYL. +* +* INFO (output) INTEGER +* On exit, if INFO is set to +* =0: Successful exit +* <0: If INFO = -i, input argument number i is illegal. +* >0: The matrix pairs (A, D) and (B, E) have common or very +* close eigenvalues. +* +* Further Details +* =============== +* +* Based on contributions by +* Bo Kagstrom and Peter Poromaa, Department of Computing Science, +* Umea University, S-901 87 Umea, Sweden. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE + INTEGER LDZ + PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, LDZ = 2 ) +* .. +* .. Local Scalars .. + LOGICAL NOTRAN + INTEGER I, IERR, J, K + DOUBLE PRECISION SCALOC + COMPLEX*16 ALPHA +* .. +* .. Local Arrays .. + INTEGER IPIV( LDZ ), JPIV( LDZ ) + COMPLEX*16 RHS( LDZ ), Z( LDZ, LDZ ) +* .. +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. +* .. External Subroutines .. + EXTERNAL XERBLA, ZAXPY, ZGESC2, ZGETC2, ZLATDF, ZSCAL +* .. +* .. Intrinsic Functions .. + INTRINSIC DCMPLX, DCONJG, MAX +* .. +* .. Executable Statements .. +* +* Decode and test input parameters +* + INFO = 0 + IERR = 0 + NOTRAN = LSAME( TRANS, 'N' ) + IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN + INFO = -1 + ELSE IF( NOTRAN ) THEN + IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.2 ) ) THEN + INFO = -2 + END IF + END IF + IF( INFO.EQ.0 ) THEN + IF( M.LE.0 ) THEN + INFO = -3 + ELSE IF( N.LE.0 ) THEN + INFO = -4 + ELSE IF( LDA.LT.MAX( 1, M ) ) THEN + INFO = -5 + ELSE IF( LDB.LT.MAX( 1, N ) ) THEN + INFO = -8 + ELSE IF( LDC.LT.MAX( 1, M ) ) THEN + INFO = -10 + ELSE IF( LDD.LT.MAX( 1, M ) ) THEN + INFO = -12 + ELSE IF( LDE.LT.MAX( 1, N ) ) THEN + INFO = -14 + ELSE IF( LDF.LT.MAX( 1, M ) ) THEN + INFO = -16 + END IF + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'ZTGSY2', -INFO ) + RETURN + END IF +* + IF( NOTRAN ) THEN +* +* Solve (I, J) - system +* A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) +* D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) +* for I = M, M - 1, ..., 1; J = 1, 2, ..., N +* + SCALE = ONE + SCALOC = ONE + DO 30 J = 1, N + DO 20 I = M, 1, -1 +* +* Build 2 by 2 system +* + Z( 1, 1 ) = A( I, I ) + Z( 2, 1 ) = D( I, I ) + Z( 1, 2 ) = -B( J, J ) + Z( 2, 2 ) = -E( J, J ) +* +* Set up right hand side(s) +* + RHS( 1 ) = C( I, J ) + RHS( 2 ) = F( I, J ) +* +* Solve Z * x = RHS +* + CALL ZGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR ) + IF( IERR.GT.0 ) + $ INFO = IERR + IF( IJOB.EQ.0 ) THEN + CALL ZGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC ) + IF( SCALOC.NE.ONE ) THEN + DO 10 K = 1, N + CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), + $ C( 1, K ), 1 ) + CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), + $ F( 1, K ), 1 ) + 10 CONTINUE + SCALE = SCALE*SCALOC + END IF + ELSE + CALL ZLATDF( IJOB, LDZ, Z, LDZ, RHS, RDSUM, RDSCAL, + $ IPIV, JPIV ) + END IF +* +* Unpack solution vector(s) +* + C( I, J ) = RHS( 1 ) + F( I, J ) = RHS( 2 ) +* +* Substitute R(I, J) and L(I, J) into remaining equation. +* + IF( I.GT.1 ) THEN + ALPHA = -RHS( 1 ) + CALL ZAXPY( I-1, ALPHA, A( 1, I ), 1, C( 1, J ), 1 ) + CALL ZAXPY( I-1, ALPHA, D( 1, I ), 1, F( 1, J ), 1 ) + END IF + IF( J.LT.N ) THEN + CALL ZAXPY( N-J, RHS( 2 ), B( J, J+1 ), LDB, + $ C( I, J+1 ), LDC ) + CALL ZAXPY( N-J, RHS( 2 ), E( J, J+1 ), LDE, + $ F( I, J+1 ), LDF ) + END IF +* + 20 CONTINUE + 30 CONTINUE + ELSE +* +* Solve transposed (I, J) - system: +* A(I, I)' * R(I, J) + D(I, I)' * L(J, J) = C(I, J) +* R(I, I) * B(J, J) + L(I, J) * E(J, J) = -F(I, J) +* for I = 1, 2, ..., M, J = N, N - 1, ..., 1 +* + SCALE = ONE + SCALOC = ONE + DO 80 I = 1, M + DO 70 J = N, 1, -1 +* +* Build 2 by 2 system Z' +* + Z( 1, 1 ) = DCONJG( A( I, I ) ) + Z( 2, 1 ) = -DCONJG( B( J, J ) ) + Z( 1, 2 ) = DCONJG( D( I, I ) ) + Z( 2, 2 ) = -DCONJG( E( J, J ) ) +* +* +* Set up right hand side(s) +* + RHS( 1 ) = C( I, J ) + RHS( 2 ) = F( I, J ) +* +* Solve Z' * x = RHS +* + CALL ZGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR ) + IF( IERR.GT.0 ) + $ INFO = IERR + CALL ZGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC ) + IF( SCALOC.NE.ONE ) THEN + DO 40 K = 1, N + CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), C( 1, K ), + $ 1 ) + CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), F( 1, K ), + $ 1 ) + 40 CONTINUE + SCALE = SCALE*SCALOC + END IF +* +* Unpack solution vector(s) +* + C( I, J ) = RHS( 1 ) + F( I, J ) = RHS( 2 ) +* +* Substitute R(I, J) and L(I, J) into remaining equation. +* + DO 50 K = 1, J - 1 + F( I, K ) = F( I, K ) + RHS( 1 )*DCONJG( B( K, J ) ) + + $ RHS( 2 )*DCONJG( E( K, J ) ) + 50 CONTINUE + DO 60 K = I + 1, M + C( K, J ) = C( K, J ) - DCONJG( A( I, K ) )*RHS( 1 ) - + $ DCONJG( D( I, K ) )*RHS( 2 ) + 60 CONTINUE +* + 70 CONTINUE + 80 CONTINUE + END IF + RETURN +* +* End of ZTGSY2 +* + END |