summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/ztgsy2.f
diff options
context:
space:
mode:
authorAnkit Raj2017-06-21 10:26:59 +0530
committerAnkit Raj2017-06-21 10:26:59 +0530
commita555820564d9f2e95ca8c97871339d3a5a2081c3 (patch)
treeadb074b66a8e6750209880e6932305ce0a94c8bf /2.3-1/src/fortran/lapack/ztgsy2.f
downloadScilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.gz
Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.bz2
Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.zip
Updated Scilab2C
Diffstat (limited to '2.3-1/src/fortran/lapack/ztgsy2.f')
-rw-r--r--2.3-1/src/fortran/lapack/ztgsy2.f361
1 files changed, 361 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/ztgsy2.f b/2.3-1/src/fortran/lapack/ztgsy2.f
new file mode 100644
index 00000000..82ec5eb1
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/ztgsy2.f
@@ -0,0 +1,361 @@
+ SUBROUTINE ZTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
+ $ LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL,
+ $ INFO )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER TRANS
+ INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N
+ DOUBLE PRECISION RDSCAL, RDSUM, SCALE
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ),
+ $ D( LDD, * ), E( LDE, * ), F( LDF, * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZTGSY2 solves the generalized Sylvester equation
+*
+* A * R - L * B = scale * C (1)
+* D * R - L * E = scale * F
+*
+* using Level 1 and 2 BLAS, where R and L are unknown M-by-N matrices,
+* (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M,
+* N-by-N and M-by-N, respectively. A, B, D and E are upper triangular
+* (i.e., (A,D) and (B,E) in generalized Schur form).
+*
+* The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output
+* scaling factor chosen to avoid overflow.
+*
+* In matrix notation solving equation (1) corresponds to solve
+* Zx = scale * b, where Z is defined as
+*
+* Z = [ kron(In, A) -kron(B', Im) ] (2)
+* [ kron(In, D) -kron(E', Im) ],
+*
+* Ik is the identity matrix of size k and X' is the transpose of X.
+* kron(X, Y) is the Kronecker product between the matrices X and Y.
+*
+* If TRANS = 'C', y in the conjugate transposed system Z'y = scale*b
+* is solved for, which is equivalent to solve for R and L in
+*
+* A' * R + D' * L = scale * C (3)
+* R * B' + L * E' = scale * -F
+*
+* This case is used to compute an estimate of Dif[(A, D), (B, E)] =
+* = sigma_min(Z) using reverse communicaton with ZLACON.
+*
+* ZTGSY2 also (IJOB >= 1) contributes to the computation in ZTGSYL
+* of an upper bound on the separation between to matrix pairs. Then
+* the input (A, D), (B, E) are sub-pencils of two matrix pairs in
+* ZTGSYL.
+*
+* Arguments
+* =========
+*
+* TRANS (input) CHARACTER*1
+* = 'N', solve the generalized Sylvester equation (1).
+* = 'T': solve the 'transposed' system (3).
+*
+* IJOB (input) INTEGER
+* Specifies what kind of functionality to be performed.
+* =0: solve (1) only.
+* =1: A contribution from this subsystem to a Frobenius
+* norm-based estimate of the separation between two matrix
+* pairs is computed. (look ahead strategy is used).
+* =2: A contribution from this subsystem to a Frobenius
+* norm-based estimate of the separation between two matrix
+* pairs is computed. (DGECON on sub-systems is used.)
+* Not referenced if TRANS = 'T'.
+*
+* M (input) INTEGER
+* On entry, M specifies the order of A and D, and the row
+* dimension of C, F, R and L.
+*
+* N (input) INTEGER
+* On entry, N specifies the order of B and E, and the column
+* dimension of C, F, R and L.
+*
+* A (input) COMPLEX*16 array, dimension (LDA, M)
+* On entry, A contains an upper triangular matrix.
+*
+* LDA (input) INTEGER
+* The leading dimension of the matrix A. LDA >= max(1, M).
+*
+* B (input) COMPLEX*16 array, dimension (LDB, N)
+* On entry, B contains an upper triangular matrix.
+*
+* LDB (input) INTEGER
+* The leading dimension of the matrix B. LDB >= max(1, N).
+*
+* C (input/output) COMPLEX*16 array, dimension (LDC, N)
+* On entry, C contains the right-hand-side of the first matrix
+* equation in (1).
+* On exit, if IJOB = 0, C has been overwritten by the solution
+* R.
+*
+* LDC (input) INTEGER
+* The leading dimension of the matrix C. LDC >= max(1, M).
+*
+* D (input) COMPLEX*16 array, dimension (LDD, M)
+* On entry, D contains an upper triangular matrix.
+*
+* LDD (input) INTEGER
+* The leading dimension of the matrix D. LDD >= max(1, M).
+*
+* E (input) COMPLEX*16 array, dimension (LDE, N)
+* On entry, E contains an upper triangular matrix.
+*
+* LDE (input) INTEGER
+* The leading dimension of the matrix E. LDE >= max(1, N).
+*
+* F (input/output) COMPLEX*16 array, dimension (LDF, N)
+* On entry, F contains the right-hand-side of the second matrix
+* equation in (1).
+* On exit, if IJOB = 0, F has been overwritten by the solution
+* L.
+*
+* LDF (input) INTEGER
+* The leading dimension of the matrix F. LDF >= max(1, M).
+*
+* SCALE (output) DOUBLE PRECISION
+* On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions
+* R and L (C and F on entry) will hold the solutions to a
+* slightly perturbed system but the input matrices A, B, D and
+* E have not been changed. If SCALE = 0, R and L will hold the
+* solutions to the homogeneous system with C = F = 0.
+* Normally, SCALE = 1.
+*
+* RDSUM (input/output) DOUBLE PRECISION
+* On entry, the sum of squares of computed contributions to
+* the Dif-estimate under computation by ZTGSYL, where the
+* scaling factor RDSCAL (see below) has been factored out.
+* On exit, the corresponding sum of squares updated with the
+* contributions from the current sub-system.
+* If TRANS = 'T' RDSUM is not touched.
+* NOTE: RDSUM only makes sense when ZTGSY2 is called by
+* ZTGSYL.
+*
+* RDSCAL (input/output) DOUBLE PRECISION
+* On entry, scaling factor used to prevent overflow in RDSUM.
+* On exit, RDSCAL is updated w.r.t. the current contributions
+* in RDSUM.
+* If TRANS = 'T', RDSCAL is not touched.
+* NOTE: RDSCAL only makes sense when ZTGSY2 is called by
+* ZTGSYL.
+*
+* INFO (output) INTEGER
+* On exit, if INFO is set to
+* =0: Successful exit
+* <0: If INFO = -i, input argument number i is illegal.
+* >0: The matrix pairs (A, D) and (B, E) have common or very
+* close eigenvalues.
+*
+* Further Details
+* ===============
+*
+* Based on contributions by
+* Bo Kagstrom and Peter Poromaa, Department of Computing Science,
+* Umea University, S-901 87 Umea, Sweden.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ INTEGER LDZ
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, LDZ = 2 )
+* ..
+* .. Local Scalars ..
+ LOGICAL NOTRAN
+ INTEGER I, IERR, J, K
+ DOUBLE PRECISION SCALOC
+ COMPLEX*16 ALPHA
+* ..
+* .. Local Arrays ..
+ INTEGER IPIV( LDZ ), JPIV( LDZ )
+ COMPLEX*16 RHS( LDZ ), Z( LDZ, LDZ )
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA, ZAXPY, ZGESC2, ZGETC2, ZLATDF, ZSCAL
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DCMPLX, DCONJG, MAX
+* ..
+* .. Executable Statements ..
+*
+* Decode and test input parameters
+*
+ INFO = 0
+ IERR = 0
+ NOTRAN = LSAME( TRANS, 'N' )
+ IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
+ INFO = -1
+ ELSE IF( NOTRAN ) THEN
+ IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.2 ) ) THEN
+ INFO = -2
+ END IF
+ END IF
+ IF( INFO.EQ.0 ) THEN
+ IF( M.LE.0 ) THEN
+ INFO = -3
+ ELSE IF( N.LE.0 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -5
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -8
+ ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
+ INFO = -10
+ ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
+ INFO = -12
+ ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
+ INFO = -14
+ ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
+ INFO = -16
+ END IF
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZTGSY2', -INFO )
+ RETURN
+ END IF
+*
+ IF( NOTRAN ) THEN
+*
+* Solve (I, J) - system
+* A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
+* D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
+* for I = M, M - 1, ..., 1; J = 1, 2, ..., N
+*
+ SCALE = ONE
+ SCALOC = ONE
+ DO 30 J = 1, N
+ DO 20 I = M, 1, -1
+*
+* Build 2 by 2 system
+*
+ Z( 1, 1 ) = A( I, I )
+ Z( 2, 1 ) = D( I, I )
+ Z( 1, 2 ) = -B( J, J )
+ Z( 2, 2 ) = -E( J, J )
+*
+* Set up right hand side(s)
+*
+ RHS( 1 ) = C( I, J )
+ RHS( 2 ) = F( I, J )
+*
+* Solve Z * x = RHS
+*
+ CALL ZGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR )
+ IF( IERR.GT.0 )
+ $ INFO = IERR
+ IF( IJOB.EQ.0 ) THEN
+ CALL ZGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
+ IF( SCALOC.NE.ONE ) THEN
+ DO 10 K = 1, N
+ CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
+ $ C( 1, K ), 1 )
+ CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
+ $ F( 1, K ), 1 )
+ 10 CONTINUE
+ SCALE = SCALE*SCALOC
+ END IF
+ ELSE
+ CALL ZLATDF( IJOB, LDZ, Z, LDZ, RHS, RDSUM, RDSCAL,
+ $ IPIV, JPIV )
+ END IF
+*
+* Unpack solution vector(s)
+*
+ C( I, J ) = RHS( 1 )
+ F( I, J ) = RHS( 2 )
+*
+* Substitute R(I, J) and L(I, J) into remaining equation.
+*
+ IF( I.GT.1 ) THEN
+ ALPHA = -RHS( 1 )
+ CALL ZAXPY( I-1, ALPHA, A( 1, I ), 1, C( 1, J ), 1 )
+ CALL ZAXPY( I-1, ALPHA, D( 1, I ), 1, F( 1, J ), 1 )
+ END IF
+ IF( J.LT.N ) THEN
+ CALL ZAXPY( N-J, RHS( 2 ), B( J, J+1 ), LDB,
+ $ C( I, J+1 ), LDC )
+ CALL ZAXPY( N-J, RHS( 2 ), E( J, J+1 ), LDE,
+ $ F( I, J+1 ), LDF )
+ END IF
+*
+ 20 CONTINUE
+ 30 CONTINUE
+ ELSE
+*
+* Solve transposed (I, J) - system:
+* A(I, I)' * R(I, J) + D(I, I)' * L(J, J) = C(I, J)
+* R(I, I) * B(J, J) + L(I, J) * E(J, J) = -F(I, J)
+* for I = 1, 2, ..., M, J = N, N - 1, ..., 1
+*
+ SCALE = ONE
+ SCALOC = ONE
+ DO 80 I = 1, M
+ DO 70 J = N, 1, -1
+*
+* Build 2 by 2 system Z'
+*
+ Z( 1, 1 ) = DCONJG( A( I, I ) )
+ Z( 2, 1 ) = -DCONJG( B( J, J ) )
+ Z( 1, 2 ) = DCONJG( D( I, I ) )
+ Z( 2, 2 ) = -DCONJG( E( J, J ) )
+*
+*
+* Set up right hand side(s)
+*
+ RHS( 1 ) = C( I, J )
+ RHS( 2 ) = F( I, J )
+*
+* Solve Z' * x = RHS
+*
+ CALL ZGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR )
+ IF( IERR.GT.0 )
+ $ INFO = IERR
+ CALL ZGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
+ IF( SCALOC.NE.ONE ) THEN
+ DO 40 K = 1, N
+ CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), C( 1, K ),
+ $ 1 )
+ CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), F( 1, K ),
+ $ 1 )
+ 40 CONTINUE
+ SCALE = SCALE*SCALOC
+ END IF
+*
+* Unpack solution vector(s)
+*
+ C( I, J ) = RHS( 1 )
+ F( I, J ) = RHS( 2 )
+*
+* Substitute R(I, J) and L(I, J) into remaining equation.
+*
+ DO 50 K = 1, J - 1
+ F( I, K ) = F( I, K ) + RHS( 1 )*DCONJG( B( K, J ) ) +
+ $ RHS( 2 )*DCONJG( E( K, J ) )
+ 50 CONTINUE
+ DO 60 K = I + 1, M
+ C( K, J ) = C( K, J ) - DCONJG( A( I, K ) )*RHS( 1 ) -
+ $ DCONJG( D( I, K ) )*RHS( 2 )
+ 60 CONTINUE
+*
+ 70 CONTINUE
+ 80 CONTINUE
+ END IF
+ RETURN
+*
+* End of ZTGSY2
+*
+ END