summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/ztgevc.f
diff options
context:
space:
mode:
authorSiddhesh Wani2015-05-25 14:46:31 +0530
committerSiddhesh Wani2015-05-25 14:46:31 +0530
commit6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26 (patch)
tree1b7bd89fdcfd01715713d8a15db471dc75a96bbf /2.3-1/src/fortran/lapack/ztgevc.f
downloadScilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.gz
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.bz2
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.zip
Original Version
Diffstat (limited to '2.3-1/src/fortran/lapack/ztgevc.f')
-rw-r--r--2.3-1/src/fortran/lapack/ztgevc.f633
1 files changed, 633 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/ztgevc.f b/2.3-1/src/fortran/lapack/ztgevc.f
new file mode 100644
index 00000000..b8da962d
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/ztgevc.f
@@ -0,0 +1,633 @@
+ SUBROUTINE ZTGEVC( SIDE, HOWMNY, SELECT, N, S, LDS, P, LDP, VL,
+ $ LDVL, VR, LDVR, MM, M, WORK, RWORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER HOWMNY, SIDE
+ INTEGER INFO, LDP, LDS, LDVL, LDVR, M, MM, N
+* ..
+* .. Array Arguments ..
+ LOGICAL SELECT( * )
+ DOUBLE PRECISION RWORK( * )
+ COMPLEX*16 P( LDP, * ), S( LDS, * ), VL( LDVL, * ),
+ $ VR( LDVR, * ), WORK( * )
+* ..
+*
+*
+* Purpose
+* =======
+*
+* ZTGEVC computes some or all of the right and/or left eigenvectors of
+* a pair of complex matrices (S,P), where S and P are upper triangular.
+* Matrix pairs of this type are produced by the generalized Schur
+* factorization of a complex matrix pair (A,B):
+*
+* A = Q*S*Z**H, B = Q*P*Z**H
+*
+* as computed by ZGGHRD + ZHGEQZ.
+*
+* The right eigenvector x and the left eigenvector y of (S,P)
+* corresponding to an eigenvalue w are defined by:
+*
+* S*x = w*P*x, (y**H)*S = w*(y**H)*P,
+*
+* where y**H denotes the conjugate tranpose of y.
+* The eigenvalues are not input to this routine, but are computed
+* directly from the diagonal elements of S and P.
+*
+* This routine returns the matrices X and/or Y of right and left
+* eigenvectors of (S,P), or the products Z*X and/or Q*Y,
+* where Z and Q are input matrices.
+* If Q and Z are the unitary factors from the generalized Schur
+* factorization of a matrix pair (A,B), then Z*X and Q*Y
+* are the matrices of right and left eigenvectors of (A,B).
+*
+* Arguments
+* =========
+*
+* SIDE (input) CHARACTER*1
+* = 'R': compute right eigenvectors only;
+* = 'L': compute left eigenvectors only;
+* = 'B': compute both right and left eigenvectors.
+*
+* HOWMNY (input) CHARACTER*1
+* = 'A': compute all right and/or left eigenvectors;
+* = 'B': compute all right and/or left eigenvectors,
+* backtransformed by the matrices in VR and/or VL;
+* = 'S': compute selected right and/or left eigenvectors,
+* specified by the logical array SELECT.
+*
+* SELECT (input) LOGICAL array, dimension (N)
+* If HOWMNY='S', SELECT specifies the eigenvectors to be
+* computed. The eigenvector corresponding to the j-th
+* eigenvalue is computed if SELECT(j) = .TRUE..
+* Not referenced if HOWMNY = 'A' or 'B'.
+*
+* N (input) INTEGER
+* The order of the matrices S and P. N >= 0.
+*
+* S (input) COMPLEX*16 array, dimension (LDS,N)
+* The upper triangular matrix S from a generalized Schur
+* factorization, as computed by ZHGEQZ.
+*
+* LDS (input) INTEGER
+* The leading dimension of array S. LDS >= max(1,N).
+*
+* P (input) COMPLEX*16 array, dimension (LDP,N)
+* The upper triangular matrix P from a generalized Schur
+* factorization, as computed by ZHGEQZ. P must have real
+* diagonal elements.
+*
+* LDP (input) INTEGER
+* The leading dimension of array P. LDP >= max(1,N).
+*
+* VL (input/output) COMPLEX*16 array, dimension (LDVL,MM)
+* On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
+* contain an N-by-N matrix Q (usually the unitary matrix Q
+* of left Schur vectors returned by ZHGEQZ).
+* On exit, if SIDE = 'L' or 'B', VL contains:
+* if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P);
+* if HOWMNY = 'B', the matrix Q*Y;
+* if HOWMNY = 'S', the left eigenvectors of (S,P) specified by
+* SELECT, stored consecutively in the columns of
+* VL, in the same order as their eigenvalues.
+* Not referenced if SIDE = 'R'.
+*
+* LDVL (input) INTEGER
+* The leading dimension of array VL. LDVL >= 1, and if
+* SIDE = 'L' or 'l' or 'B' or 'b', LDVL >= N.
+*
+* VR (input/output) COMPLEX*16 array, dimension (LDVR,MM)
+* On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
+* contain an N-by-N matrix Q (usually the unitary matrix Z
+* of right Schur vectors returned by ZHGEQZ).
+* On exit, if SIDE = 'R' or 'B', VR contains:
+* if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P);
+* if HOWMNY = 'B', the matrix Z*X;
+* if HOWMNY = 'S', the right eigenvectors of (S,P) specified by
+* SELECT, stored consecutively in the columns of
+* VR, in the same order as their eigenvalues.
+* Not referenced if SIDE = 'L'.
+*
+* LDVR (input) INTEGER
+* The leading dimension of the array VR. LDVR >= 1, and if
+* SIDE = 'R' or 'B', LDVR >= N.
+*
+* MM (input) INTEGER
+* The number of columns in the arrays VL and/or VR. MM >= M.
+*
+* M (output) INTEGER
+* The number of columns in the arrays VL and/or VR actually
+* used to store the eigenvectors. If HOWMNY = 'A' or 'B', M
+* is set to N. Each selected eigenvector occupies one column.
+*
+* WORK (workspace) COMPLEX*16 array, dimension (2*N)
+*
+* RWORK (workspace) DOUBLE PRECISION array, dimension (2*N)
+*
+* INFO (output) INTEGER
+* = 0: successful exit.
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+ COMPLEX*16 CZERO, CONE
+ PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
+ $ CONE = ( 1.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL COMPL, COMPR, ILALL, ILBACK, ILBBAD, ILCOMP,
+ $ LSA, LSB
+ INTEGER I, IBEG, IEIG, IEND, IHWMNY, IM, ISIDE, ISRC,
+ $ J, JE, JR
+ DOUBLE PRECISION ACOEFA, ACOEFF, ANORM, ASCALE, BCOEFA, BIG,
+ $ BIGNUM, BNORM, BSCALE, DMIN, SAFMIN, SBETA,
+ $ SCALE, SMALL, TEMP, ULP, XMAX
+ COMPLEX*16 BCOEFF, CA, CB, D, SALPHA, SUM, SUMA, SUMB, X
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ DOUBLE PRECISION DLAMCH
+ COMPLEX*16 ZLADIV
+ EXTERNAL LSAME, DLAMCH, ZLADIV
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLABAD, XERBLA, ZGEMV
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN
+* ..
+* .. Statement Functions ..
+ DOUBLE PRECISION ABS1
+* ..
+* .. Statement Function definitions ..
+ ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
+* ..
+* .. Executable Statements ..
+*
+* Decode and Test the input parameters
+*
+ IF( LSAME( HOWMNY, 'A' ) ) THEN
+ IHWMNY = 1
+ ILALL = .TRUE.
+ ILBACK = .FALSE.
+ ELSE IF( LSAME( HOWMNY, 'S' ) ) THEN
+ IHWMNY = 2
+ ILALL = .FALSE.
+ ILBACK = .FALSE.
+ ELSE IF( LSAME( HOWMNY, 'B' ) ) THEN
+ IHWMNY = 3
+ ILALL = .TRUE.
+ ILBACK = .TRUE.
+ ELSE
+ IHWMNY = -1
+ END IF
+*
+ IF( LSAME( SIDE, 'R' ) ) THEN
+ ISIDE = 1
+ COMPL = .FALSE.
+ COMPR = .TRUE.
+ ELSE IF( LSAME( SIDE, 'L' ) ) THEN
+ ISIDE = 2
+ COMPL = .TRUE.
+ COMPR = .FALSE.
+ ELSE IF( LSAME( SIDE, 'B' ) ) THEN
+ ISIDE = 3
+ COMPL = .TRUE.
+ COMPR = .TRUE.
+ ELSE
+ ISIDE = -1
+ END IF
+*
+ INFO = 0
+ IF( ISIDE.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( IHWMNY.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDS.LT.MAX( 1, N ) ) THEN
+ INFO = -6
+ ELSE IF( LDP.LT.MAX( 1, N ) ) THEN
+ INFO = -8
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZTGEVC', -INFO )
+ RETURN
+ END IF
+*
+* Count the number of eigenvectors
+*
+ IF( .NOT.ILALL ) THEN
+ IM = 0
+ DO 10 J = 1, N
+ IF( SELECT( J ) )
+ $ IM = IM + 1
+ 10 CONTINUE
+ ELSE
+ IM = N
+ END IF
+*
+* Check diagonal of B
+*
+ ILBBAD = .FALSE.
+ DO 20 J = 1, N
+ IF( DIMAG( P( J, J ) ).NE.ZERO )
+ $ ILBBAD = .TRUE.
+ 20 CONTINUE
+*
+ IF( ILBBAD ) THEN
+ INFO = -7
+ ELSE IF( COMPL .AND. LDVL.LT.N .OR. LDVL.LT.1 ) THEN
+ INFO = -10
+ ELSE IF( COMPR .AND. LDVR.LT.N .OR. LDVR.LT.1 ) THEN
+ INFO = -12
+ ELSE IF( MM.LT.IM ) THEN
+ INFO = -13
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZTGEVC', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ M = IM
+ IF( N.EQ.0 )
+ $ RETURN
+*
+* Machine Constants
+*
+ SAFMIN = DLAMCH( 'Safe minimum' )
+ BIG = ONE / SAFMIN
+ CALL DLABAD( SAFMIN, BIG )
+ ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
+ SMALL = SAFMIN*N / ULP
+ BIG = ONE / SMALL
+ BIGNUM = ONE / ( SAFMIN*N )
+*
+* Compute the 1-norm of each column of the strictly upper triangular
+* part of A and B to check for possible overflow in the triangular
+* solver.
+*
+ ANORM = ABS1( S( 1, 1 ) )
+ BNORM = ABS1( P( 1, 1 ) )
+ RWORK( 1 ) = ZERO
+ RWORK( N+1 ) = ZERO
+ DO 40 J = 2, N
+ RWORK( J ) = ZERO
+ RWORK( N+J ) = ZERO
+ DO 30 I = 1, J - 1
+ RWORK( J ) = RWORK( J ) + ABS1( S( I, J ) )
+ RWORK( N+J ) = RWORK( N+J ) + ABS1( P( I, J ) )
+ 30 CONTINUE
+ ANORM = MAX( ANORM, RWORK( J )+ABS1( S( J, J ) ) )
+ BNORM = MAX( BNORM, RWORK( N+J )+ABS1( P( J, J ) ) )
+ 40 CONTINUE
+*
+ ASCALE = ONE / MAX( ANORM, SAFMIN )
+ BSCALE = ONE / MAX( BNORM, SAFMIN )
+*
+* Left eigenvectors
+*
+ IF( COMPL ) THEN
+ IEIG = 0
+*
+* Main loop over eigenvalues
+*
+ DO 140 JE = 1, N
+ IF( ILALL ) THEN
+ ILCOMP = .TRUE.
+ ELSE
+ ILCOMP = SELECT( JE )
+ END IF
+ IF( ILCOMP ) THEN
+ IEIG = IEIG + 1
+*
+ IF( ABS1( S( JE, JE ) ).LE.SAFMIN .AND.
+ $ ABS( DBLE( P( JE, JE ) ) ).LE.SAFMIN ) THEN
+*
+* Singular matrix pencil -- return unit eigenvector
+*
+ DO 50 JR = 1, N
+ VL( JR, IEIG ) = CZERO
+ 50 CONTINUE
+ VL( IEIG, IEIG ) = CONE
+ GO TO 140
+ END IF
+*
+* Non-singular eigenvalue:
+* Compute coefficients a and b in
+* H
+* y ( a A - b B ) = 0
+*
+ TEMP = ONE / MAX( ABS1( S( JE, JE ) )*ASCALE,
+ $ ABS( DBLE( P( JE, JE ) ) )*BSCALE, SAFMIN )
+ SALPHA = ( TEMP*S( JE, JE ) )*ASCALE
+ SBETA = ( TEMP*DBLE( P( JE, JE ) ) )*BSCALE
+ ACOEFF = SBETA*ASCALE
+ BCOEFF = SALPHA*BSCALE
+*
+* Scale to avoid underflow
+*
+ LSA = ABS( SBETA ).GE.SAFMIN .AND. ABS( ACOEFF ).LT.SMALL
+ LSB = ABS1( SALPHA ).GE.SAFMIN .AND. ABS1( BCOEFF ).LT.
+ $ SMALL
+*
+ SCALE = ONE
+ IF( LSA )
+ $ SCALE = ( SMALL / ABS( SBETA ) )*MIN( ANORM, BIG )
+ IF( LSB )
+ $ SCALE = MAX( SCALE, ( SMALL / ABS1( SALPHA ) )*
+ $ MIN( BNORM, BIG ) )
+ IF( LSA .OR. LSB ) THEN
+ SCALE = MIN( SCALE, ONE /
+ $ ( SAFMIN*MAX( ONE, ABS( ACOEFF ),
+ $ ABS1( BCOEFF ) ) ) )
+ IF( LSA ) THEN
+ ACOEFF = ASCALE*( SCALE*SBETA )
+ ELSE
+ ACOEFF = SCALE*ACOEFF
+ END IF
+ IF( LSB ) THEN
+ BCOEFF = BSCALE*( SCALE*SALPHA )
+ ELSE
+ BCOEFF = SCALE*BCOEFF
+ END IF
+ END IF
+*
+ ACOEFA = ABS( ACOEFF )
+ BCOEFA = ABS1( BCOEFF )
+ XMAX = ONE
+ DO 60 JR = 1, N
+ WORK( JR ) = CZERO
+ 60 CONTINUE
+ WORK( JE ) = CONE
+ DMIN = MAX( ULP*ACOEFA*ANORM, ULP*BCOEFA*BNORM, SAFMIN )
+*
+* H
+* Triangular solve of (a A - b B) y = 0
+*
+* H
+* (rowwise in (a A - b B) , or columnwise in a A - b B)
+*
+ DO 100 J = JE + 1, N
+*
+* Compute
+* j-1
+* SUM = sum conjg( a*S(k,j) - b*P(k,j) )*x(k)
+* k=je
+* (Scale if necessary)
+*
+ TEMP = ONE / XMAX
+ IF( ACOEFA*RWORK( J )+BCOEFA*RWORK( N+J ).GT.BIGNUM*
+ $ TEMP ) THEN
+ DO 70 JR = JE, J - 1
+ WORK( JR ) = TEMP*WORK( JR )
+ 70 CONTINUE
+ XMAX = ONE
+ END IF
+ SUMA = CZERO
+ SUMB = CZERO
+*
+ DO 80 JR = JE, J - 1
+ SUMA = SUMA + DCONJG( S( JR, J ) )*WORK( JR )
+ SUMB = SUMB + DCONJG( P( JR, J ) )*WORK( JR )
+ 80 CONTINUE
+ SUM = ACOEFF*SUMA - DCONJG( BCOEFF )*SUMB
+*
+* Form x(j) = - SUM / conjg( a*S(j,j) - b*P(j,j) )
+*
+* with scaling and perturbation of the denominator
+*
+ D = DCONJG( ACOEFF*S( J, J )-BCOEFF*P( J, J ) )
+ IF( ABS1( D ).LE.DMIN )
+ $ D = DCMPLX( DMIN )
+*
+ IF( ABS1( D ).LT.ONE ) THEN
+ IF( ABS1( SUM ).GE.BIGNUM*ABS1( D ) ) THEN
+ TEMP = ONE / ABS1( SUM )
+ DO 90 JR = JE, J - 1
+ WORK( JR ) = TEMP*WORK( JR )
+ 90 CONTINUE
+ XMAX = TEMP*XMAX
+ SUM = TEMP*SUM
+ END IF
+ END IF
+ WORK( J ) = ZLADIV( -SUM, D )
+ XMAX = MAX( XMAX, ABS1( WORK( J ) ) )
+ 100 CONTINUE
+*
+* Back transform eigenvector if HOWMNY='B'.
+*
+ IF( ILBACK ) THEN
+ CALL ZGEMV( 'N', N, N+1-JE, CONE, VL( 1, JE ), LDVL,
+ $ WORK( JE ), 1, CZERO, WORK( N+1 ), 1 )
+ ISRC = 2
+ IBEG = 1
+ ELSE
+ ISRC = 1
+ IBEG = JE
+ END IF
+*
+* Copy and scale eigenvector into column of VL
+*
+ XMAX = ZERO
+ DO 110 JR = IBEG, N
+ XMAX = MAX( XMAX, ABS1( WORK( ( ISRC-1 )*N+JR ) ) )
+ 110 CONTINUE
+*
+ IF( XMAX.GT.SAFMIN ) THEN
+ TEMP = ONE / XMAX
+ DO 120 JR = IBEG, N
+ VL( JR, IEIG ) = TEMP*WORK( ( ISRC-1 )*N+JR )
+ 120 CONTINUE
+ ELSE
+ IBEG = N + 1
+ END IF
+*
+ DO 130 JR = 1, IBEG - 1
+ VL( JR, IEIG ) = CZERO
+ 130 CONTINUE
+*
+ END IF
+ 140 CONTINUE
+ END IF
+*
+* Right eigenvectors
+*
+ IF( COMPR ) THEN
+ IEIG = IM + 1
+*
+* Main loop over eigenvalues
+*
+ DO 250 JE = N, 1, -1
+ IF( ILALL ) THEN
+ ILCOMP = .TRUE.
+ ELSE
+ ILCOMP = SELECT( JE )
+ END IF
+ IF( ILCOMP ) THEN
+ IEIG = IEIG - 1
+*
+ IF( ABS1( S( JE, JE ) ).LE.SAFMIN .AND.
+ $ ABS( DBLE( P( JE, JE ) ) ).LE.SAFMIN ) THEN
+*
+* Singular matrix pencil -- return unit eigenvector
+*
+ DO 150 JR = 1, N
+ VR( JR, IEIG ) = CZERO
+ 150 CONTINUE
+ VR( IEIG, IEIG ) = CONE
+ GO TO 250
+ END IF
+*
+* Non-singular eigenvalue:
+* Compute coefficients a and b in
+*
+* ( a A - b B ) x = 0
+*
+ TEMP = ONE / MAX( ABS1( S( JE, JE ) )*ASCALE,
+ $ ABS( DBLE( P( JE, JE ) ) )*BSCALE, SAFMIN )
+ SALPHA = ( TEMP*S( JE, JE ) )*ASCALE
+ SBETA = ( TEMP*DBLE( P( JE, JE ) ) )*BSCALE
+ ACOEFF = SBETA*ASCALE
+ BCOEFF = SALPHA*BSCALE
+*
+* Scale to avoid underflow
+*
+ LSA = ABS( SBETA ).GE.SAFMIN .AND. ABS( ACOEFF ).LT.SMALL
+ LSB = ABS1( SALPHA ).GE.SAFMIN .AND. ABS1( BCOEFF ).LT.
+ $ SMALL
+*
+ SCALE = ONE
+ IF( LSA )
+ $ SCALE = ( SMALL / ABS( SBETA ) )*MIN( ANORM, BIG )
+ IF( LSB )
+ $ SCALE = MAX( SCALE, ( SMALL / ABS1( SALPHA ) )*
+ $ MIN( BNORM, BIG ) )
+ IF( LSA .OR. LSB ) THEN
+ SCALE = MIN( SCALE, ONE /
+ $ ( SAFMIN*MAX( ONE, ABS( ACOEFF ),
+ $ ABS1( BCOEFF ) ) ) )
+ IF( LSA ) THEN
+ ACOEFF = ASCALE*( SCALE*SBETA )
+ ELSE
+ ACOEFF = SCALE*ACOEFF
+ END IF
+ IF( LSB ) THEN
+ BCOEFF = BSCALE*( SCALE*SALPHA )
+ ELSE
+ BCOEFF = SCALE*BCOEFF
+ END IF
+ END IF
+*
+ ACOEFA = ABS( ACOEFF )
+ BCOEFA = ABS1( BCOEFF )
+ XMAX = ONE
+ DO 160 JR = 1, N
+ WORK( JR ) = CZERO
+ 160 CONTINUE
+ WORK( JE ) = CONE
+ DMIN = MAX( ULP*ACOEFA*ANORM, ULP*BCOEFA*BNORM, SAFMIN )
+*
+* Triangular solve of (a A - b B) x = 0 (columnwise)
+*
+* WORK(1:j-1) contains sums w,
+* WORK(j+1:JE) contains x
+*
+ DO 170 JR = 1, JE - 1
+ WORK( JR ) = ACOEFF*S( JR, JE ) - BCOEFF*P( JR, JE )
+ 170 CONTINUE
+ WORK( JE ) = CONE
+*
+ DO 210 J = JE - 1, 1, -1
+*
+* Form x(j) := - w(j) / d
+* with scaling and perturbation of the denominator
+*
+ D = ACOEFF*S( J, J ) - BCOEFF*P( J, J )
+ IF( ABS1( D ).LE.DMIN )
+ $ D = DCMPLX( DMIN )
+*
+ IF( ABS1( D ).LT.ONE ) THEN
+ IF( ABS1( WORK( J ) ).GE.BIGNUM*ABS1( D ) ) THEN
+ TEMP = ONE / ABS1( WORK( J ) )
+ DO 180 JR = 1, JE
+ WORK( JR ) = TEMP*WORK( JR )
+ 180 CONTINUE
+ END IF
+ END IF
+*
+ WORK( J ) = ZLADIV( -WORK( J ), D )
+*
+ IF( J.GT.1 ) THEN
+*
+* w = w + x(j)*(a S(*,j) - b P(*,j) ) with scaling
+*
+ IF( ABS1( WORK( J ) ).GT.ONE ) THEN
+ TEMP = ONE / ABS1( WORK( J ) )
+ IF( ACOEFA*RWORK( J )+BCOEFA*RWORK( N+J ).GE.
+ $ BIGNUM*TEMP ) THEN
+ DO 190 JR = 1, JE
+ WORK( JR ) = TEMP*WORK( JR )
+ 190 CONTINUE
+ END IF
+ END IF
+*
+ CA = ACOEFF*WORK( J )
+ CB = BCOEFF*WORK( J )
+ DO 200 JR = 1, J - 1
+ WORK( JR ) = WORK( JR ) + CA*S( JR, J ) -
+ $ CB*P( JR, J )
+ 200 CONTINUE
+ END IF
+ 210 CONTINUE
+*
+* Back transform eigenvector if HOWMNY='B'.
+*
+ IF( ILBACK ) THEN
+ CALL ZGEMV( 'N', N, JE, CONE, VR, LDVR, WORK, 1,
+ $ CZERO, WORK( N+1 ), 1 )
+ ISRC = 2
+ IEND = N
+ ELSE
+ ISRC = 1
+ IEND = JE
+ END IF
+*
+* Copy and scale eigenvector into column of VR
+*
+ XMAX = ZERO
+ DO 220 JR = 1, IEND
+ XMAX = MAX( XMAX, ABS1( WORK( ( ISRC-1 )*N+JR ) ) )
+ 220 CONTINUE
+*
+ IF( XMAX.GT.SAFMIN ) THEN
+ TEMP = ONE / XMAX
+ DO 230 JR = 1, IEND
+ VR( JR, IEIG ) = TEMP*WORK( ( ISRC-1 )*N+JR )
+ 230 CONTINUE
+ ELSE
+ IEND = 0
+ END IF
+*
+ DO 240 JR = IEND + 1, N
+ VR( JR, IEIG ) = CZERO
+ 240 CONTINUE
+*
+ END IF
+ 250 CONTINUE
+ END IF
+*
+ RETURN
+*
+* End of ZTGEVC
+*
+ END