summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/zpotf2.f
diff options
context:
space:
mode:
authorSiddhesh Wani2015-05-25 14:46:31 +0530
committerSiddhesh Wani2015-05-25 14:46:31 +0530
commit6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26 (patch)
tree1b7bd89fdcfd01715713d8a15db471dc75a96bbf /2.3-1/src/fortran/lapack/zpotf2.f
downloadScilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.gz
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.bz2
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.zip
Original Version
Diffstat (limited to '2.3-1/src/fortran/lapack/zpotf2.f')
-rw-r--r--2.3-1/src/fortran/lapack/zpotf2.f174
1 files changed, 174 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/zpotf2.f b/2.3-1/src/fortran/lapack/zpotf2.f
new file mode 100644
index 00000000..ca9df447
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/zpotf2.f
@@ -0,0 +1,174 @@
+ SUBROUTINE ZPOTF2( UPLO, N, A, LDA, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, LDA, N
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 A( LDA, * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZPOTF2 computes the Cholesky factorization of a complex Hermitian
+* positive definite matrix A.
+*
+* The factorization has the form
+* A = U' * U , if UPLO = 'U', or
+* A = L * L', if UPLO = 'L',
+* where U is an upper triangular matrix and L is lower triangular.
+*
+* This is the unblocked version of the algorithm, calling Level 2 BLAS.
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* Specifies whether the upper or lower triangular part of the
+* Hermitian matrix A is stored.
+* = 'U': Upper triangular
+* = 'L': Lower triangular
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* A (input/output) COMPLEX*16 array, dimension (LDA,N)
+* On entry, the Hermitian matrix A. If UPLO = 'U', the leading
+* n by n upper triangular part of A contains the upper
+* triangular part of the matrix A, and the strictly lower
+* triangular part of A is not referenced. If UPLO = 'L', the
+* leading n by n lower triangular part of A contains the lower
+* triangular part of the matrix A, and the strictly upper
+* triangular part of A is not referenced.
+*
+* On exit, if INFO = 0, the factor U or L from the Cholesky
+* factorization A = U'*U or A = L*L'.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -k, the k-th argument had an illegal value
+* > 0: if INFO = k, the leading minor of order k is not
+* positive definite, and the factorization could not be
+* completed.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE, ZERO
+ PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
+ COMPLEX*16 CONE
+ PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL UPPER
+ INTEGER J
+ DOUBLE PRECISION AJJ
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ COMPLEX*16 ZDOTC
+ EXTERNAL LSAME, ZDOTC
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA, ZDSCAL, ZGEMV, ZLACGV
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DBLE, MAX, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ UPPER = LSAME( UPLO, 'U' )
+ IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -4
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZPOTF2', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+ IF( UPPER ) THEN
+*
+* Compute the Cholesky factorization A = U'*U.
+*
+ DO 10 J = 1, N
+*
+* Compute U(J,J) and test for non-positive-definiteness.
+*
+ AJJ = DBLE( A( J, J ) ) - ZDOTC( J-1, A( 1, J ), 1,
+ $ A( 1, J ), 1 )
+ IF( AJJ.LE.ZERO ) THEN
+ A( J, J ) = AJJ
+ GO TO 30
+ END IF
+ AJJ = SQRT( AJJ )
+ A( J, J ) = AJJ
+*
+* Compute elements J+1:N of row J.
+*
+ IF( J.LT.N ) THEN
+ CALL ZLACGV( J-1, A( 1, J ), 1 )
+ CALL ZGEMV( 'Transpose', J-1, N-J, -CONE, A( 1, J+1 ),
+ $ LDA, A( 1, J ), 1, CONE, A( J, J+1 ), LDA )
+ CALL ZLACGV( J-1, A( 1, J ), 1 )
+ CALL ZDSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
+ END IF
+ 10 CONTINUE
+ ELSE
+*
+* Compute the Cholesky factorization A = L*L'.
+*
+ DO 20 J = 1, N
+*
+* Compute L(J,J) and test for non-positive-definiteness.
+*
+ AJJ = DBLE( A( J, J ) ) - ZDOTC( J-1, A( J, 1 ), LDA,
+ $ A( J, 1 ), LDA )
+ IF( AJJ.LE.ZERO ) THEN
+ A( J, J ) = AJJ
+ GO TO 30
+ END IF
+ AJJ = SQRT( AJJ )
+ A( J, J ) = AJJ
+*
+* Compute elements J+1:N of column J.
+*
+ IF( J.LT.N ) THEN
+ CALL ZLACGV( J-1, A( J, 1 ), LDA )
+ CALL ZGEMV( 'No transpose', N-J, J-1, -CONE, A( J+1, 1 ),
+ $ LDA, A( J, 1 ), LDA, CONE, A( J+1, J ), 1 )
+ CALL ZLACGV( J-1, A( J, 1 ), LDA )
+ CALL ZDSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
+ END IF
+ 20 CONTINUE
+ END IF
+ GO TO 40
+*
+ 30 CONTINUE
+ INFO = J
+*
+ 40 CONTINUE
+ RETURN
+*
+* End of ZPOTF2
+*
+ END