diff options
author | Ankit Raj | 2017-06-21 10:26:59 +0530 |
---|---|---|
committer | Ankit Raj | 2017-06-21 10:26:59 +0530 |
commit | a555820564d9f2e95ca8c97871339d3a5a2081c3 (patch) | |
tree | adb074b66a8e6750209880e6932305ce0a94c8bf /2.3-1/src/fortran/lapack/zlaqr3.f | |
download | Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.gz Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.bz2 Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.zip |
Updated Scilab2C
Diffstat (limited to '2.3-1/src/fortran/lapack/zlaqr3.f')
-rw-r--r-- | 2.3-1/src/fortran/lapack/zlaqr3.f | 448 |
1 files changed, 448 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/zlaqr3.f b/2.3-1/src/fortran/lapack/zlaqr3.f new file mode 100644 index 00000000..e9bf393a --- /dev/null +++ b/2.3-1/src/fortran/lapack/zlaqr3.f @@ -0,0 +1,448 @@ + SUBROUTINE ZLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ, + $ IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT, + $ NV, WV, LDWV, WORK, LWORK ) +* +* -- LAPACK auxiliary routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV, + $ LDZ, LWORK, N, ND, NH, NS, NV, NW + LOGICAL WANTT, WANTZ +* .. +* .. Array Arguments .. + COMPLEX*16 H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ), + $ WORK( * ), WV( LDWV, * ), Z( LDZ, * ) +* .. +* +* ****************************************************************** +* Aggressive early deflation: +* +* This subroutine accepts as input an upper Hessenberg matrix +* H and performs an unitary similarity transformation +* designed to detect and deflate fully converged eigenvalues from +* a trailing principal submatrix. On output H has been over- +* written by a new Hessenberg matrix that is a perturbation of +* an unitary similarity transformation of H. It is to be +* hoped that the final version of H has many zero subdiagonal +* entries. +* +* ****************************************************************** +* WANTT (input) LOGICAL +* If .TRUE., then the Hessenberg matrix H is fully updated +* so that the triangular Schur factor may be +* computed (in cooperation with the calling subroutine). +* If .FALSE., then only enough of H is updated to preserve +* the eigenvalues. +* +* WANTZ (input) LOGICAL +* If .TRUE., then the unitary matrix Z is updated so +* so that the unitary Schur factor may be computed +* (in cooperation with the calling subroutine). +* If .FALSE., then Z is not referenced. +* +* N (input) INTEGER +* The order of the matrix H and (if WANTZ is .TRUE.) the +* order of the unitary matrix Z. +* +* KTOP (input) INTEGER +* It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. +* KBOT and KTOP together determine an isolated block +* along the diagonal of the Hessenberg matrix. +* +* KBOT (input) INTEGER +* It is assumed without a check that either +* KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together +* determine an isolated block along the diagonal of the +* Hessenberg matrix. +* +* NW (input) INTEGER +* Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1). +* +* H (input/output) COMPLEX*16 array, dimension (LDH,N) +* On input the initial N-by-N section of H stores the +* Hessenberg matrix undergoing aggressive early deflation. +* On output H has been transformed by a unitary +* similarity transformation, perturbed, and the returned +* to Hessenberg form that (it is to be hoped) has some +* zero subdiagonal entries. +* +* LDH (input) integer +* Leading dimension of H just as declared in the calling +* subroutine. N .LE. LDH +* +* ILOZ (input) INTEGER +* IHIZ (input) INTEGER +* Specify the rows of Z to which transformations must be +* applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N. +* +* Z (input/output) COMPLEX*16 array, dimension (LDZ,IHI) +* IF WANTZ is .TRUE., then on output, the unitary +* similarity transformation mentioned above has been +* accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right. +* If WANTZ is .FALSE., then Z is unreferenced. +* +* LDZ (input) integer +* The leading dimension of Z just as declared in the +* calling subroutine. 1 .LE. LDZ. +* +* NS (output) integer +* The number of unconverged (ie approximate) eigenvalues +* returned in SR and SI that may be used as shifts by the +* calling subroutine. +* +* ND (output) integer +* The number of converged eigenvalues uncovered by this +* subroutine. +* +* SH (output) COMPLEX*16 array, dimension KBOT +* On output, approximate eigenvalues that may +* be used for shifts are stored in SH(KBOT-ND-NS+1) +* through SR(KBOT-ND). Converged eigenvalues are +* stored in SH(KBOT-ND+1) through SH(KBOT). +* +* V (workspace) COMPLEX*16 array, dimension (LDV,NW) +* An NW-by-NW work array. +* +* LDV (input) integer scalar +* The leading dimension of V just as declared in the +* calling subroutine. NW .LE. LDV +* +* NH (input) integer scalar +* The number of columns of T. NH.GE.NW. +* +* T (workspace) COMPLEX*16 array, dimension (LDT,NW) +* +* LDT (input) integer +* The leading dimension of T just as declared in the +* calling subroutine. NW .LE. LDT +* +* NV (input) integer +* The number of rows of work array WV available for +* workspace. NV.GE.NW. +* +* WV (workspace) COMPLEX*16 array, dimension (LDWV,NW) +* +* LDWV (input) integer +* The leading dimension of W just as declared in the +* calling subroutine. NW .LE. LDV +* +* WORK (workspace) COMPLEX*16 array, dimension LWORK. +* On exit, WORK(1) is set to an estimate of the optimal value +* of LWORK for the given values of N, NW, KTOP and KBOT. +* +* LWORK (input) integer +* The dimension of the work array WORK. LWORK = 2*NW +* suffices, but greater efficiency may result from larger +* values of LWORK. +* +* If LWORK = -1, then a workspace query is assumed; ZLAQR3 +* only estimates the optimal workspace size for the given +* values of N, NW, KTOP and KBOT. The estimate is returned +* in WORK(1). No error message related to LWORK is issued +* by XERBLA. Neither H nor Z are accessed. +* +* ================================================================ +* Based on contributions by +* Karen Braman and Ralph Byers, Department of Mathematics, +* University of Kansas, USA +* +* ================================================================== +* .. Parameters .. + COMPLEX*16 ZERO, ONE + PARAMETER ( ZERO = ( 0.0d0, 0.0d0 ), + $ ONE = ( 1.0d0, 0.0d0 ) ) + DOUBLE PRECISION RZERO, RONE + PARAMETER ( RZERO = 0.0d0, RONE = 1.0d0 ) +* .. +* .. Local Scalars .. + COMPLEX*16 BETA, CDUM, S, TAU + DOUBLE PRECISION FOO, SAFMAX, SAFMIN, SMLNUM, ULP + INTEGER I, IFST, ILST, INFO, INFQR, J, JW, KCOL, KLN, + $ KNT, KROW, KWTOP, LTOP, LWK1, LWK2, LWK3, + $ LWKOPT, NMIN +* .. +* .. External Functions .. + DOUBLE PRECISION DLAMCH + INTEGER ILAENV + EXTERNAL DLAMCH, ILAENV +* .. +* .. External Subroutines .. + EXTERNAL DLABAD, ZCOPY, ZGEHRD, ZGEMM, ZLACPY, ZLAHQR, + $ ZLAQR4, ZLARF, ZLARFG, ZLASET, ZTREXC, ZUNGHR +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, MAX, MIN +* .. +* .. Statement Functions .. + DOUBLE PRECISION CABS1 +* .. +* .. Statement Function definitions .. + CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) ) +* .. +* .. Executable Statements .. +* +* ==== Estimate optimal workspace. ==== +* + JW = MIN( NW, KBOT-KTOP+1 ) + IF( JW.LE.2 ) THEN + LWKOPT = 1 + ELSE +* +* ==== Workspace query call to ZGEHRD ==== +* + CALL ZGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO ) + LWK1 = INT( WORK( 1 ) ) +* +* ==== Workspace query call to ZUNGHR ==== +* + CALL ZUNGHR( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO ) + LWK2 = INT( WORK( 1 ) ) +* +* ==== Workspace query call to ZLAQR4 ==== +* + CALL ZLAQR4( .true., .true., JW, 1, JW, T, LDT, SH, 1, JW, V, + $ LDV, WORK, -1, INFQR ) + LWK3 = INT( WORK( 1 ) ) +* +* ==== Optimal workspace ==== +* + LWKOPT = MAX( JW+MAX( LWK1, LWK2 ), LWK3 ) + END IF +* +* ==== Quick return in case of workspace query. ==== +* + IF( LWORK.EQ.-1 ) THEN + WORK( 1 ) = DCMPLX( LWKOPT, 0 ) + RETURN + END IF +* +* ==== Nothing to do ... +* ... for an empty active block ... ==== + NS = 0 + ND = 0 + IF( KTOP.GT.KBOT ) + $ RETURN +* ... nor for an empty deflation window. ==== + IF( NW.LT.1 ) + $ RETURN +* +* ==== Machine constants ==== +* + SAFMIN = DLAMCH( 'SAFE MINIMUM' ) + SAFMAX = RONE / SAFMIN + CALL DLABAD( SAFMIN, SAFMAX ) + ULP = DLAMCH( 'PRECISION' ) + SMLNUM = SAFMIN*( DBLE( N ) / ULP ) +* +* ==== Setup deflation window ==== +* + JW = MIN( NW, KBOT-KTOP+1 ) + KWTOP = KBOT - JW + 1 + IF( KWTOP.EQ.KTOP ) THEN + S = ZERO + ELSE + S = H( KWTOP, KWTOP-1 ) + END IF +* + IF( KBOT.EQ.KWTOP ) THEN +* +* ==== 1-by-1 deflation window: not much to do ==== +* + SH( KWTOP ) = H( KWTOP, KWTOP ) + NS = 1 + ND = 0 + IF( CABS1( S ).LE.MAX( SMLNUM, ULP*CABS1( H( KWTOP, + $ KWTOP ) ) ) ) THEN + + NS = 0 + ND = 1 + IF( KWTOP.GT.KTOP ) + $ H( KWTOP, KWTOP-1 ) = ZERO + END IF + RETURN + END IF +* +* ==== Convert to spike-triangular form. (In case of a +* . rare QR failure, this routine continues to do +* . aggressive early deflation using that part of +* . the deflation window that converged using INFQR +* . here and there to keep track.) ==== +* + CALL ZLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT ) + CALL ZCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 ) +* + CALL ZLASET( 'A', JW, JW, ZERO, ONE, V, LDV ) + NMIN = ILAENV( 12, 'ZLAQR3', 'SV', JW, 1, JW, LWORK ) + IF( JW.GT.NMIN ) THEN + CALL ZLAQR4( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1, + $ JW, V, LDV, WORK, LWORK, INFQR ) + ELSE + CALL ZLAHQR( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1, + $ JW, V, LDV, INFQR ) + END IF +* +* ==== Deflation detection loop ==== +* + NS = JW + ILST = INFQR + 1 + DO 10 KNT = INFQR + 1, JW +* +* ==== Small spike tip deflation test ==== +* + FOO = CABS1( T( NS, NS ) ) + IF( FOO.EQ.RZERO ) + $ FOO = CABS1( S ) + IF( CABS1( S )*CABS1( V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) ) + $ THEN +* +* ==== One more converged eigenvalue ==== +* + NS = NS - 1 + ELSE +* +* ==== One undflatable eigenvalue. Move it up out of the +* . way. (ZTREXC can not fail in this case.) ==== +* + IFST = NS + CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO ) + ILST = ILST + 1 + END IF + 10 CONTINUE +* +* ==== Return to Hessenberg form ==== +* + IF( NS.EQ.0 ) + $ S = ZERO +* + IF( NS.LT.JW ) THEN +* +* ==== sorting the diagonal of T improves accuracy for +* . graded matrices. ==== +* + DO 30 I = INFQR + 1, NS + IFST = I + DO 20 J = I + 1, NS + IF( CABS1( T( J, J ) ).GT.CABS1( T( IFST, IFST ) ) ) + $ IFST = J + 20 CONTINUE + ILST = I + IF( IFST.NE.ILST ) + $ CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO ) + 30 CONTINUE + END IF +* +* ==== Restore shift/eigenvalue array from T ==== +* + DO 40 I = INFQR + 1, JW + SH( KWTOP+I-1 ) = T( I, I ) + 40 CONTINUE +* +* + IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN + IF( NS.GT.1 .AND. S.NE.ZERO ) THEN +* +* ==== Reflect spike back into lower triangle ==== +* + CALL ZCOPY( NS, V, LDV, WORK, 1 ) + DO 50 I = 1, NS + WORK( I ) = DCONJG( WORK( I ) ) + 50 CONTINUE + BETA = WORK( 1 ) + CALL ZLARFG( NS, BETA, WORK( 2 ), 1, TAU ) + WORK( 1 ) = ONE +* + CALL ZLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT ) +* + CALL ZLARF( 'L', NS, JW, WORK, 1, DCONJG( TAU ), T, LDT, + $ WORK( JW+1 ) ) + CALL ZLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT, + $ WORK( JW+1 ) ) + CALL ZLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV, + $ WORK( JW+1 ) ) +* + CALL ZGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ), + $ LWORK-JW, INFO ) + END IF +* +* ==== Copy updated reduced window into place ==== +* + IF( KWTOP.GT.1 ) + $ H( KWTOP, KWTOP-1 ) = S*DCONJG( V( 1, 1 ) ) + CALL ZLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH ) + CALL ZCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ), + $ LDH+1 ) +* +* ==== Accumulate orthogonal matrix in order update +* . H and Z, if requested. (A modified version +* . of ZUNGHR that accumulates block Householder +* . transformations into V directly might be +* . marginally more efficient than the following.) ==== +* + IF( NS.GT.1 .AND. S.NE.ZERO ) THEN + CALL ZUNGHR( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ), + $ LWORK-JW, INFO ) + CALL ZGEMM( 'N', 'N', JW, NS, NS, ONE, V, LDV, T, LDT, ZERO, + $ WV, LDWV ) + CALL ZLACPY( 'A', JW, NS, WV, LDWV, V, LDV ) + END IF +* +* ==== Update vertical slab in H ==== +* + IF( WANTT ) THEN + LTOP = 1 + ELSE + LTOP = KTOP + END IF + DO 60 KROW = LTOP, KWTOP - 1, NV + KLN = MIN( NV, KWTOP-KROW ) + CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ), + $ LDH, V, LDV, ZERO, WV, LDWV ) + CALL ZLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH ) + 60 CONTINUE +* +* ==== Update horizontal slab in H ==== +* + IF( WANTT ) THEN + DO 70 KCOL = KBOT + 1, N, NH + KLN = MIN( NH, N-KCOL+1 ) + CALL ZGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV, + $ H( KWTOP, KCOL ), LDH, ZERO, T, LDT ) + CALL ZLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ), + $ LDH ) + 70 CONTINUE + END IF +* +* ==== Update vertical slab in Z ==== +* + IF( WANTZ ) THEN + DO 80 KROW = ILOZ, IHIZ, NV + KLN = MIN( NV, IHIZ-KROW+1 ) + CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ), + $ LDZ, V, LDV, ZERO, WV, LDWV ) + CALL ZLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ), + $ LDZ ) + 80 CONTINUE + END IF + END IF +* +* ==== Return the number of deflations ... ==== +* + ND = JW - NS +* +* ==== ... and the number of shifts. (Subtracting +* . INFQR from the spike length takes care +* . of the case of a rare QR failure while +* . calculating eigenvalues of the deflation +* . window.) ==== +* + NS = NS - INFQR +* +* ==== Return optimal workspace. ==== +* + WORK( 1 ) = DCMPLX( LWKOPT, 0 ) +* +* ==== End of ZLAQR3 ==== +* + END |