summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/zlaqp2.f
diff options
context:
space:
mode:
authorAnkit Raj2017-06-21 10:26:59 +0530
committerAnkit Raj2017-06-21 10:26:59 +0530
commita555820564d9f2e95ca8c97871339d3a5a2081c3 (patch)
treeadb074b66a8e6750209880e6932305ce0a94c8bf /2.3-1/src/fortran/lapack/zlaqp2.f
downloadScilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.gz
Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.bz2
Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.zip
Updated Scilab2C
Diffstat (limited to '2.3-1/src/fortran/lapack/zlaqp2.f')
-rw-r--r--2.3-1/src/fortran/lapack/zlaqp2.f179
1 files changed, 179 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/zlaqp2.f b/2.3-1/src/fortran/lapack/zlaqp2.f
new file mode 100644
index 00000000..46f6d95c
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/zlaqp2.f
@@ -0,0 +1,179 @@
+ SUBROUTINE ZLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2,
+ $ WORK )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER LDA, M, N, OFFSET
+* ..
+* .. Array Arguments ..
+ INTEGER JPVT( * )
+ DOUBLE PRECISION VN1( * ), VN2( * )
+ COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZLAQP2 computes a QR factorization with column pivoting of
+* the block A(OFFSET+1:M,1:N).
+* The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
+*
+* Arguments
+* =========
+*
+* M (input) INTEGER
+* The number of rows of the matrix A. M >= 0.
+*
+* N (input) INTEGER
+* The number of columns of the matrix A. N >= 0.
+*
+* OFFSET (input) INTEGER
+* The number of rows of the matrix A that must be pivoted
+* but no factorized. OFFSET >= 0.
+*
+* A (input/output) COMPLEX*16 array, dimension (LDA,N)
+* On entry, the M-by-N matrix A.
+* On exit, the upper triangle of block A(OFFSET+1:M,1:N) is
+* the triangular factor obtained; the elements in block
+* A(OFFSET+1:M,1:N) below the diagonal, together with the
+* array TAU, represent the orthogonal matrix Q as a product of
+* elementary reflectors. Block A(1:OFFSET,1:N) has been
+* accordingly pivoted, but no factorized.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,M).
+*
+* JPVT (input/output) INTEGER array, dimension (N)
+* On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
+* to the front of A*P (a leading column); if JPVT(i) = 0,
+* the i-th column of A is a free column.
+* On exit, if JPVT(i) = k, then the i-th column of A*P
+* was the k-th column of A.
+*
+* TAU (output) COMPLEX*16 array, dimension (min(M,N))
+* The scalar factors of the elementary reflectors.
+*
+* VN1 (input/output) DOUBLE PRECISION array, dimension (N)
+* The vector with the partial column norms.
+*
+* VN2 (input/output) DOUBLE PRECISION array, dimension (N)
+* The vector with the exact column norms.
+*
+* WORK (workspace) COMPLEX*16 array, dimension (N)
+*
+* Further Details
+* ===============
+*
+* Based on contributions by
+* G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
+* X. Sun, Computer Science Dept., Duke University, USA
+*
+* Partial column norm updating strategy modified by
+* Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
+* University of Zagreb, Croatia.
+* June 2006.
+* For more details see LAPACK Working Note 176.
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ COMPLEX*16 CONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0,
+ $ CONE = ( 1.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ INTEGER I, ITEMP, J, MN, OFFPI, PVT
+ DOUBLE PRECISION TEMP, TEMP2, TOL3Z
+ COMPLEX*16 AII
+* ..
+* .. External Subroutines ..
+ EXTERNAL ZLARF, ZLARFG, ZSWAP
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DCONJG, MAX, MIN, SQRT
+* ..
+* .. External Functions ..
+ INTEGER IDAMAX
+ DOUBLE PRECISION DLAMCH, DZNRM2
+ EXTERNAL IDAMAX, DLAMCH, DZNRM2
+* ..
+* .. Executable Statements ..
+*
+ MN = MIN( M-OFFSET, N )
+ TOL3Z = SQRT(DLAMCH('Epsilon'))
+*
+* Compute factorization.
+*
+ DO 20 I = 1, MN
+*
+ OFFPI = OFFSET + I
+*
+* Determine ith pivot column and swap if necessary.
+*
+ PVT = ( I-1 ) + IDAMAX( N-I+1, VN1( I ), 1 )
+*
+ IF( PVT.NE.I ) THEN
+ CALL ZSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 )
+ ITEMP = JPVT( PVT )
+ JPVT( PVT ) = JPVT( I )
+ JPVT( I ) = ITEMP
+ VN1( PVT ) = VN1( I )
+ VN2( PVT ) = VN2( I )
+ END IF
+*
+* Generate elementary reflector H(i).
+*
+ IF( OFFPI.LT.M ) THEN
+ CALL ZLARFG( M-OFFPI+1, A( OFFPI, I ), A( OFFPI+1, I ), 1,
+ $ TAU( I ) )
+ ELSE
+ CALL ZLARFG( 1, A( M, I ), A( M, I ), 1, TAU( I ) )
+ END IF
+*
+ IF( I.LT.N ) THEN
+*
+* Apply H(i)' to A(offset+i:m,i+1:n) from the left.
+*
+ AII = A( OFFPI, I )
+ A( OFFPI, I ) = CONE
+ CALL ZLARF( 'Left', M-OFFPI+1, N-I, A( OFFPI, I ), 1,
+ $ DCONJG( TAU( I ) ), A( OFFPI, I+1 ), LDA,
+ $ WORK( 1 ) )
+ A( OFFPI, I ) = AII
+ END IF
+*
+* Update partial column norms.
+*
+ DO 10 J = I + 1, N
+ IF( VN1( J ).NE.ZERO ) THEN
+*
+* NOTE: The following 4 lines follow from the analysis in
+* Lapack Working Note 176.
+*
+ TEMP = ONE - ( ABS( A( OFFPI, J ) ) / VN1( J ) )**2
+ TEMP = MAX( TEMP, ZERO )
+ TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
+ IF( TEMP2 .LE. TOL3Z ) THEN
+ IF( OFFPI.LT.M ) THEN
+ VN1( J ) = DZNRM2( M-OFFPI, A( OFFPI+1, J ), 1 )
+ VN2( J ) = VN1( J )
+ ELSE
+ VN1( J ) = ZERO
+ VN2( J ) = ZERO
+ END IF
+ ELSE
+ VN1( J ) = VN1( J )*SQRT( TEMP )
+ END IF
+ END IF
+ 10 CONTINUE
+*
+ 20 CONTINUE
+*
+ RETURN
+*
+* End of ZLAQP2
+*
+ END