diff options
author | Siddhesh Wani | 2015-05-25 14:46:31 +0530 |
---|---|---|
committer | Siddhesh Wani | 2015-05-25 14:46:31 +0530 |
commit | 6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26 (patch) | |
tree | 1b7bd89fdcfd01715713d8a15db471dc75a96bbf /2.3-1/src/fortran/lapack/zhgeqz.f | |
download | Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.gz Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.bz2 Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.zip |
Original Version
Diffstat (limited to '2.3-1/src/fortran/lapack/zhgeqz.f')
-rw-r--r-- | 2.3-1/src/fortran/lapack/zhgeqz.f | 759 |
1 files changed, 759 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/zhgeqz.f b/2.3-1/src/fortran/lapack/zhgeqz.f new file mode 100644 index 00000000..6a9403bd --- /dev/null +++ b/2.3-1/src/fortran/lapack/zhgeqz.f @@ -0,0 +1,759 @@ + SUBROUTINE ZHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT, + $ ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, + $ RWORK, INFO ) +* +* -- LAPACK routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + CHARACTER COMPQ, COMPZ, JOB + INTEGER IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N +* .. +* .. Array Arguments .. + DOUBLE PRECISION RWORK( * ) + COMPLEX*16 ALPHA( * ), BETA( * ), H( LDH, * ), + $ Q( LDQ, * ), T( LDT, * ), WORK( * ), + $ Z( LDZ, * ) +* .. +* +* Purpose +* ======= +* +* ZHGEQZ computes the eigenvalues of a complex matrix pair (H,T), +* where H is an upper Hessenberg matrix and T is upper triangular, +* using the single-shift QZ method. +* Matrix pairs of this type are produced by the reduction to +* generalized upper Hessenberg form of a complex matrix pair (A,B): +* +* A = Q1*H*Z1**H, B = Q1*T*Z1**H, +* +* as computed by ZGGHRD. +* +* If JOB='S', then the Hessenberg-triangular pair (H,T) is +* also reduced to generalized Schur form, +* +* H = Q*S*Z**H, T = Q*P*Z**H, +* +* where Q and Z are unitary matrices and S and P are upper triangular. +* +* Optionally, the unitary matrix Q from the generalized Schur +* factorization may be postmultiplied into an input matrix Q1, and the +* unitary matrix Z may be postmultiplied into an input matrix Z1. +* If Q1 and Z1 are the unitary matrices from ZGGHRD that reduced +* the matrix pair (A,B) to generalized Hessenberg form, then the output +* matrices Q1*Q and Z1*Z are the unitary factors from the generalized +* Schur factorization of (A,B): +* +* A = (Q1*Q)*S*(Z1*Z)**H, B = (Q1*Q)*P*(Z1*Z)**H. +* +* To avoid overflow, eigenvalues of the matrix pair (H,T) +* (equivalently, of (A,B)) are computed as a pair of complex values +* (alpha,beta). If beta is nonzero, lambda = alpha / beta is an +* eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP) +* A*x = lambda*B*x +* and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the +* alternate form of the GNEP +* mu*A*y = B*y. +* The values of alpha and beta for the i-th eigenvalue can be read +* directly from the generalized Schur form: alpha = S(i,i), +* beta = P(i,i). +* +* Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix +* Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973), +* pp. 241--256. +* +* Arguments +* ========= +* +* JOB (input) CHARACTER*1 +* = 'E': Compute eigenvalues only; +* = 'S': Computer eigenvalues and the Schur form. +* +* COMPQ (input) CHARACTER*1 +* = 'N': Left Schur vectors (Q) are not computed; +* = 'I': Q is initialized to the unit matrix and the matrix Q +* of left Schur vectors of (H,T) is returned; +* = 'V': Q must contain a unitary matrix Q1 on entry and +* the product Q1*Q is returned. +* +* COMPZ (input) CHARACTER*1 +* = 'N': Right Schur vectors (Z) are not computed; +* = 'I': Q is initialized to the unit matrix and the matrix Z +* of right Schur vectors of (H,T) is returned; +* = 'V': Z must contain a unitary matrix Z1 on entry and +* the product Z1*Z is returned. +* +* N (input) INTEGER +* The order of the matrices H, T, Q, and Z. N >= 0. +* +* ILO (input) INTEGER +* IHI (input) INTEGER +* ILO and IHI mark the rows and columns of H which are in +* Hessenberg form. It is assumed that A is already upper +* triangular in rows and columns 1:ILO-1 and IHI+1:N. +* If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0. +* +* H (input/output) COMPLEX*16 array, dimension (LDH, N) +* On entry, the N-by-N upper Hessenberg matrix H. +* On exit, if JOB = 'S', H contains the upper triangular +* matrix S from the generalized Schur factorization. +* If JOB = 'E', the diagonal of H matches that of S, but +* the rest of H is unspecified. +* +* LDH (input) INTEGER +* The leading dimension of the array H. LDH >= max( 1, N ). +* +* T (input/output) COMPLEX*16 array, dimension (LDT, N) +* On entry, the N-by-N upper triangular matrix T. +* On exit, if JOB = 'S', T contains the upper triangular +* matrix P from the generalized Schur factorization. +* If JOB = 'E', the diagonal of T matches that of P, but +* the rest of T is unspecified. +* +* LDT (input) INTEGER +* The leading dimension of the array T. LDT >= max( 1, N ). +* +* ALPHA (output) COMPLEX*16 array, dimension (N) +* The complex scalars alpha that define the eigenvalues of +* GNEP. ALPHA(i) = S(i,i) in the generalized Schur +* factorization. +* +* BETA (output) COMPLEX*16 array, dimension (N) +* The real non-negative scalars beta that define the +* eigenvalues of GNEP. BETA(i) = P(i,i) in the generalized +* Schur factorization. +* +* Together, the quantities alpha = ALPHA(j) and beta = BETA(j) +* represent the j-th eigenvalue of the matrix pair (A,B), in +* one of the forms lambda = alpha/beta or mu = beta/alpha. +* Since either lambda or mu may overflow, they should not, +* in general, be computed. +* +* Q (input/output) COMPLEX*16 array, dimension (LDQ, N) +* On entry, if COMPZ = 'V', the unitary matrix Q1 used in the +* reduction of (A,B) to generalized Hessenberg form. +* On exit, if COMPZ = 'I', the unitary matrix of left Schur +* vectors of (H,T), and if COMPZ = 'V', the unitary matrix of +* left Schur vectors of (A,B). +* Not referenced if COMPZ = 'N'. +* +* LDQ (input) INTEGER +* The leading dimension of the array Q. LDQ >= 1. +* If COMPQ='V' or 'I', then LDQ >= N. +* +* Z (input/output) COMPLEX*16 array, dimension (LDZ, N) +* On entry, if COMPZ = 'V', the unitary matrix Z1 used in the +* reduction of (A,B) to generalized Hessenberg form. +* On exit, if COMPZ = 'I', the unitary matrix of right Schur +* vectors of (H,T), and if COMPZ = 'V', the unitary matrix of +* right Schur vectors of (A,B). +* Not referenced if COMPZ = 'N'. +* +* LDZ (input) INTEGER +* The leading dimension of the array Z. LDZ >= 1. +* If COMPZ='V' or 'I', then LDZ >= N. +* +* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) +* On exit, if INFO >= 0, WORK(1) returns the optimal LWORK. +* +* LWORK (input) INTEGER +* The dimension of the array WORK. LWORK >= max(1,N). +* +* If LWORK = -1, then a workspace query is assumed; the routine +* only calculates the optimal size of the WORK array, returns +* this value as the first entry of the WORK array, and no error +* message related to LWORK is issued by XERBLA. +* +* RWORK (workspace) DOUBLE PRECISION array, dimension (N) +* +* INFO (output) INTEGER +* = 0: successful exit +* < 0: if INFO = -i, the i-th argument had an illegal value +* = 1,...,N: the QZ iteration did not converge. (H,T) is not +* in Schur form, but ALPHA(i) and BETA(i), +* i=INFO+1,...,N should be correct. +* = N+1,...,2*N: the shift calculation failed. (H,T) is not +* in Schur form, but ALPHA(i) and BETA(i), +* i=INFO-N+1,...,N should be correct. +* +* Further Details +* =============== +* +* We assume that complex ABS works as long as its value is less than +* overflow. +* +* ===================================================================== +* +* .. Parameters .. + COMPLEX*16 CZERO, CONE + PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), + $ CONE = ( 1.0D+0, 0.0D+0 ) ) + DOUBLE PRECISION ZERO, ONE + PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) + DOUBLE PRECISION HALF + PARAMETER ( HALF = 0.5D+0 ) +* .. +* .. Local Scalars .. + LOGICAL ILAZR2, ILAZRO, ILQ, ILSCHR, ILZ, LQUERY + INTEGER ICOMPQ, ICOMPZ, IFIRST, IFRSTM, IITER, ILAST, + $ ILASTM, IN, ISCHUR, ISTART, J, JC, JCH, JITER, + $ JR, MAXIT + DOUBLE PRECISION ABSB, ANORM, ASCALE, ATOL, BNORM, BSCALE, BTOL, + $ C, SAFMIN, TEMP, TEMP2, TEMPR, ULP + COMPLEX*16 ABI22, AD11, AD12, AD21, AD22, CTEMP, CTEMP2, + $ CTEMP3, ESHIFT, RTDISC, S, SHIFT, SIGNBC, T1, + $ U12, X +* .. +* .. External Functions .. + LOGICAL LSAME + DOUBLE PRECISION DLAMCH, ZLANHS + EXTERNAL LSAME, DLAMCH, ZLANHS +* .. +* .. External Subroutines .. + EXTERNAL XERBLA, ZLARTG, ZLASET, ZROT, ZSCAL +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN, + $ SQRT +* .. +* .. Statement Functions .. + DOUBLE PRECISION ABS1 +* .. +* .. Statement Function definitions .. + ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) ) +* .. +* .. Executable Statements .. +* +* Decode JOB, COMPQ, COMPZ +* + IF( LSAME( JOB, 'E' ) ) THEN + ILSCHR = .FALSE. + ISCHUR = 1 + ELSE IF( LSAME( JOB, 'S' ) ) THEN + ILSCHR = .TRUE. + ISCHUR = 2 + ELSE + ISCHUR = 0 + END IF +* + IF( LSAME( COMPQ, 'N' ) ) THEN + ILQ = .FALSE. + ICOMPQ = 1 + ELSE IF( LSAME( COMPQ, 'V' ) ) THEN + ILQ = .TRUE. + ICOMPQ = 2 + ELSE IF( LSAME( COMPQ, 'I' ) ) THEN + ILQ = .TRUE. + ICOMPQ = 3 + ELSE + ICOMPQ = 0 + END IF +* + IF( LSAME( COMPZ, 'N' ) ) THEN + ILZ = .FALSE. + ICOMPZ = 1 + ELSE IF( LSAME( COMPZ, 'V' ) ) THEN + ILZ = .TRUE. + ICOMPZ = 2 + ELSE IF( LSAME( COMPZ, 'I' ) ) THEN + ILZ = .TRUE. + ICOMPZ = 3 + ELSE + ICOMPZ = 0 + END IF +* +* Check Argument Values +* + INFO = 0 + WORK( 1 ) = MAX( 1, N ) + LQUERY = ( LWORK.EQ.-1 ) + IF( ISCHUR.EQ.0 ) THEN + INFO = -1 + ELSE IF( ICOMPQ.EQ.0 ) THEN + INFO = -2 + ELSE IF( ICOMPZ.EQ.0 ) THEN + INFO = -3 + ELSE IF( N.LT.0 ) THEN + INFO = -4 + ELSE IF( ILO.LT.1 ) THEN + INFO = -5 + ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN + INFO = -6 + ELSE IF( LDH.LT.N ) THEN + INFO = -8 + ELSE IF( LDT.LT.N ) THEN + INFO = -10 + ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN + INFO = -14 + ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN + INFO = -16 + ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN + INFO = -18 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'ZHGEQZ', -INFO ) + RETURN + ELSE IF( LQUERY ) THEN + RETURN + END IF +* +* Quick return if possible +* +* WORK( 1 ) = CMPLX( 1 ) + IF( N.LE.0 ) THEN + WORK( 1 ) = DCMPLX( 1 ) + RETURN + END IF +* +* Initialize Q and Z +* + IF( ICOMPQ.EQ.3 ) + $ CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ ) + IF( ICOMPZ.EQ.3 ) + $ CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDZ ) +* +* Machine Constants +* + IN = IHI + 1 - ILO + SAFMIN = DLAMCH( 'S' ) + ULP = DLAMCH( 'E' )*DLAMCH( 'B' ) + ANORM = ZLANHS( 'F', IN, H( ILO, ILO ), LDH, RWORK ) + BNORM = ZLANHS( 'F', IN, T( ILO, ILO ), LDT, RWORK ) + ATOL = MAX( SAFMIN, ULP*ANORM ) + BTOL = MAX( SAFMIN, ULP*BNORM ) + ASCALE = ONE / MAX( SAFMIN, ANORM ) + BSCALE = ONE / MAX( SAFMIN, BNORM ) +* +* +* Set Eigenvalues IHI+1:N +* + DO 10 J = IHI + 1, N + ABSB = ABS( T( J, J ) ) + IF( ABSB.GT.SAFMIN ) THEN + SIGNBC = DCONJG( T( J, J ) / ABSB ) + T( J, J ) = ABSB + IF( ILSCHR ) THEN + CALL ZSCAL( J-1, SIGNBC, T( 1, J ), 1 ) + CALL ZSCAL( J, SIGNBC, H( 1, J ), 1 ) + ELSE + H( J, J ) = H( J, J )*SIGNBC + END IF + IF( ILZ ) + $ CALL ZSCAL( N, SIGNBC, Z( 1, J ), 1 ) + ELSE + T( J, J ) = CZERO + END IF + ALPHA( J ) = H( J, J ) + BETA( J ) = T( J, J ) + 10 CONTINUE +* +* If IHI < ILO, skip QZ steps +* + IF( IHI.LT.ILO ) + $ GO TO 190 +* +* MAIN QZ ITERATION LOOP +* +* Initialize dynamic indices +* +* Eigenvalues ILAST+1:N have been found. +* Column operations modify rows IFRSTM:whatever +* Row operations modify columns whatever:ILASTM +* +* If only eigenvalues are being computed, then +* IFRSTM is the row of the last splitting row above row ILAST; +* this is always at least ILO. +* IITER counts iterations since the last eigenvalue was found, +* to tell when to use an extraordinary shift. +* MAXIT is the maximum number of QZ sweeps allowed. +* + ILAST = IHI + IF( ILSCHR ) THEN + IFRSTM = 1 + ILASTM = N + ELSE + IFRSTM = ILO + ILASTM = IHI + END IF + IITER = 0 + ESHIFT = CZERO + MAXIT = 30*( IHI-ILO+1 ) +* + DO 170 JITER = 1, MAXIT +* +* Check for too many iterations. +* + IF( JITER.GT.MAXIT ) + $ GO TO 180 +* +* Split the matrix if possible. +* +* Two tests: +* 1: H(j,j-1)=0 or j=ILO +* 2: T(j,j)=0 +* +* Special case: j=ILAST +* + IF( ILAST.EQ.ILO ) THEN + GO TO 60 + ELSE + IF( ABS1( H( ILAST, ILAST-1 ) ).LE.ATOL ) THEN + H( ILAST, ILAST-1 ) = CZERO + GO TO 60 + END IF + END IF +* + IF( ABS( T( ILAST, ILAST ) ).LE.BTOL ) THEN + T( ILAST, ILAST ) = CZERO + GO TO 50 + END IF +* +* General case: j<ILAST +* + DO 40 J = ILAST - 1, ILO, -1 +* +* Test 1: for H(j,j-1)=0 or j=ILO +* + IF( J.EQ.ILO ) THEN + ILAZRO = .TRUE. + ELSE + IF( ABS1( H( J, J-1 ) ).LE.ATOL ) THEN + H( J, J-1 ) = CZERO + ILAZRO = .TRUE. + ELSE + ILAZRO = .FALSE. + END IF + END IF +* +* Test 2: for T(j,j)=0 +* + IF( ABS( T( J, J ) ).LT.BTOL ) THEN + T( J, J ) = CZERO +* +* Test 1a: Check for 2 consecutive small subdiagonals in A +* + ILAZR2 = .FALSE. + IF( .NOT.ILAZRO ) THEN + IF( ABS1( H( J, J-1 ) )*( ASCALE*ABS1( H( J+1, + $ J ) ) ).LE.ABS1( H( J, J ) )*( ASCALE*ATOL ) ) + $ ILAZR2 = .TRUE. + END IF +* +* If both tests pass (1 & 2), i.e., the leading diagonal +* element of B in the block is zero, split a 1x1 block off +* at the top. (I.e., at the J-th row/column) The leading +* diagonal element of the remainder can also be zero, so +* this may have to be done repeatedly. +* + IF( ILAZRO .OR. ILAZR2 ) THEN + DO 20 JCH = J, ILAST - 1 + CTEMP = H( JCH, JCH ) + CALL ZLARTG( CTEMP, H( JCH+1, JCH ), C, S, + $ H( JCH, JCH ) ) + H( JCH+1, JCH ) = CZERO + CALL ZROT( ILASTM-JCH, H( JCH, JCH+1 ), LDH, + $ H( JCH+1, JCH+1 ), LDH, C, S ) + CALL ZROT( ILASTM-JCH, T( JCH, JCH+1 ), LDT, + $ T( JCH+1, JCH+1 ), LDT, C, S ) + IF( ILQ ) + $ CALL ZROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1, + $ C, DCONJG( S ) ) + IF( ILAZR2 ) + $ H( JCH, JCH-1 ) = H( JCH, JCH-1 )*C + ILAZR2 = .FALSE. + IF( ABS1( T( JCH+1, JCH+1 ) ).GE.BTOL ) THEN + IF( JCH+1.GE.ILAST ) THEN + GO TO 60 + ELSE + IFIRST = JCH + 1 + GO TO 70 + END IF + END IF + T( JCH+1, JCH+1 ) = CZERO + 20 CONTINUE + GO TO 50 + ELSE +* +* Only test 2 passed -- chase the zero to T(ILAST,ILAST) +* Then process as in the case T(ILAST,ILAST)=0 +* + DO 30 JCH = J, ILAST - 1 + CTEMP = T( JCH, JCH+1 ) + CALL ZLARTG( CTEMP, T( JCH+1, JCH+1 ), C, S, + $ T( JCH, JCH+1 ) ) + T( JCH+1, JCH+1 ) = CZERO + IF( JCH.LT.ILASTM-1 ) + $ CALL ZROT( ILASTM-JCH-1, T( JCH, JCH+2 ), LDT, + $ T( JCH+1, JCH+2 ), LDT, C, S ) + CALL ZROT( ILASTM-JCH+2, H( JCH, JCH-1 ), LDH, + $ H( JCH+1, JCH-1 ), LDH, C, S ) + IF( ILQ ) + $ CALL ZROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1, + $ C, DCONJG( S ) ) + CTEMP = H( JCH+1, JCH ) + CALL ZLARTG( CTEMP, H( JCH+1, JCH-1 ), C, S, + $ H( JCH+1, JCH ) ) + H( JCH+1, JCH-1 ) = CZERO + CALL ZROT( JCH+1-IFRSTM, H( IFRSTM, JCH ), 1, + $ H( IFRSTM, JCH-1 ), 1, C, S ) + CALL ZROT( JCH-IFRSTM, T( IFRSTM, JCH ), 1, + $ T( IFRSTM, JCH-1 ), 1, C, S ) + IF( ILZ ) + $ CALL ZROT( N, Z( 1, JCH ), 1, Z( 1, JCH-1 ), 1, + $ C, S ) + 30 CONTINUE + GO TO 50 + END IF + ELSE IF( ILAZRO ) THEN +* +* Only test 1 passed -- work on J:ILAST +* + IFIRST = J + GO TO 70 + END IF +* +* Neither test passed -- try next J +* + 40 CONTINUE +* +* (Drop-through is "impossible") +* + INFO = 2*N + 1 + GO TO 210 +* +* T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a +* 1x1 block. +* + 50 CONTINUE + CTEMP = H( ILAST, ILAST ) + CALL ZLARTG( CTEMP, H( ILAST, ILAST-1 ), C, S, + $ H( ILAST, ILAST ) ) + H( ILAST, ILAST-1 ) = CZERO + CALL ZROT( ILAST-IFRSTM, H( IFRSTM, ILAST ), 1, + $ H( IFRSTM, ILAST-1 ), 1, C, S ) + CALL ZROT( ILAST-IFRSTM, T( IFRSTM, ILAST ), 1, + $ T( IFRSTM, ILAST-1 ), 1, C, S ) + IF( ILZ ) + $ CALL ZROT( N, Z( 1, ILAST ), 1, Z( 1, ILAST-1 ), 1, C, S ) +* +* H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHA and BETA +* + 60 CONTINUE + ABSB = ABS( T( ILAST, ILAST ) ) + IF( ABSB.GT.SAFMIN ) THEN + SIGNBC = DCONJG( T( ILAST, ILAST ) / ABSB ) + T( ILAST, ILAST ) = ABSB + IF( ILSCHR ) THEN + CALL ZSCAL( ILAST-IFRSTM, SIGNBC, T( IFRSTM, ILAST ), 1 ) + CALL ZSCAL( ILAST+1-IFRSTM, SIGNBC, H( IFRSTM, ILAST ), + $ 1 ) + ELSE + H( ILAST, ILAST ) = H( ILAST, ILAST )*SIGNBC + END IF + IF( ILZ ) + $ CALL ZSCAL( N, SIGNBC, Z( 1, ILAST ), 1 ) + ELSE + T( ILAST, ILAST ) = CZERO + END IF + ALPHA( ILAST ) = H( ILAST, ILAST ) + BETA( ILAST ) = T( ILAST, ILAST ) +* +* Go to next block -- exit if finished. +* + ILAST = ILAST - 1 + IF( ILAST.LT.ILO ) + $ GO TO 190 +* +* Reset counters +* + IITER = 0 + ESHIFT = CZERO + IF( .NOT.ILSCHR ) THEN + ILASTM = ILAST + IF( IFRSTM.GT.ILAST ) + $ IFRSTM = ILO + END IF + GO TO 160 +* +* QZ step +* +* This iteration only involves rows/columns IFIRST:ILAST. We +* assume IFIRST < ILAST, and that the diagonal of B is non-zero. +* + 70 CONTINUE + IITER = IITER + 1 + IF( .NOT.ILSCHR ) THEN + IFRSTM = IFIRST + END IF +* +* Compute the Shift. +* +* At this point, IFIRST < ILAST, and the diagonal elements of +* T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in +* magnitude) +* + IF( ( IITER / 10 )*10.NE.IITER ) THEN +* +* The Wilkinson shift (AEP p.512), i.e., the eigenvalue of +* the bottom-right 2x2 block of A inv(B) which is nearest to +* the bottom-right element. +* +* We factor B as U*D, where U has unit diagonals, and +* compute (A*inv(D))*inv(U). +* + U12 = ( BSCALE*T( ILAST-1, ILAST ) ) / + $ ( BSCALE*T( ILAST, ILAST ) ) + AD11 = ( ASCALE*H( ILAST-1, ILAST-1 ) ) / + $ ( BSCALE*T( ILAST-1, ILAST-1 ) ) + AD21 = ( ASCALE*H( ILAST, ILAST-1 ) ) / + $ ( BSCALE*T( ILAST-1, ILAST-1 ) ) + AD12 = ( ASCALE*H( ILAST-1, ILAST ) ) / + $ ( BSCALE*T( ILAST, ILAST ) ) + AD22 = ( ASCALE*H( ILAST, ILAST ) ) / + $ ( BSCALE*T( ILAST, ILAST ) ) + ABI22 = AD22 - U12*AD21 +* + T1 = HALF*( AD11+ABI22 ) + RTDISC = SQRT( T1**2+AD12*AD21-AD11*AD22 ) + TEMP = DBLE( T1-ABI22 )*DBLE( RTDISC ) + + $ DIMAG( T1-ABI22 )*DIMAG( RTDISC ) + IF( TEMP.LE.ZERO ) THEN + SHIFT = T1 + RTDISC + ELSE + SHIFT = T1 - RTDISC + END IF + ELSE +* +* Exceptional shift. Chosen for no particularly good reason. +* + ESHIFT = ESHIFT + DCONJG( ( ASCALE*H( ILAST-1, ILAST ) ) / + $ ( BSCALE*T( ILAST-1, ILAST-1 ) ) ) + SHIFT = ESHIFT + END IF +* +* Now check for two consecutive small subdiagonals. +* + DO 80 J = ILAST - 1, IFIRST + 1, -1 + ISTART = J + CTEMP = ASCALE*H( J, J ) - SHIFT*( BSCALE*T( J, J ) ) + TEMP = ABS1( CTEMP ) + TEMP2 = ASCALE*ABS1( H( J+1, J ) ) + TEMPR = MAX( TEMP, TEMP2 ) + IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN + TEMP = TEMP / TEMPR + TEMP2 = TEMP2 / TEMPR + END IF + IF( ABS1( H( J, J-1 ) )*TEMP2.LE.TEMP*ATOL ) + $ GO TO 90 + 80 CONTINUE +* + ISTART = IFIRST + CTEMP = ASCALE*H( IFIRST, IFIRST ) - + $ SHIFT*( BSCALE*T( IFIRST, IFIRST ) ) + 90 CONTINUE +* +* Do an implicit-shift QZ sweep. +* +* Initial Q +* + CTEMP2 = ASCALE*H( ISTART+1, ISTART ) + CALL ZLARTG( CTEMP, CTEMP2, C, S, CTEMP3 ) +* +* Sweep +* + DO 150 J = ISTART, ILAST - 1 + IF( J.GT.ISTART ) THEN + CTEMP = H( J, J-1 ) + CALL ZLARTG( CTEMP, H( J+1, J-1 ), C, S, H( J, J-1 ) ) + H( J+1, J-1 ) = CZERO + END IF +* + DO 100 JC = J, ILASTM + CTEMP = C*H( J, JC ) + S*H( J+1, JC ) + H( J+1, JC ) = -DCONJG( S )*H( J, JC ) + C*H( J+1, JC ) + H( J, JC ) = CTEMP + CTEMP2 = C*T( J, JC ) + S*T( J+1, JC ) + T( J+1, JC ) = -DCONJG( S )*T( J, JC ) + C*T( J+1, JC ) + T( J, JC ) = CTEMP2 + 100 CONTINUE + IF( ILQ ) THEN + DO 110 JR = 1, N + CTEMP = C*Q( JR, J ) + DCONJG( S )*Q( JR, J+1 ) + Q( JR, J+1 ) = -S*Q( JR, J ) + C*Q( JR, J+1 ) + Q( JR, J ) = CTEMP + 110 CONTINUE + END IF +* + CTEMP = T( J+1, J+1 ) + CALL ZLARTG( CTEMP, T( J+1, J ), C, S, T( J+1, J+1 ) ) + T( J+1, J ) = CZERO +* + DO 120 JR = IFRSTM, MIN( J+2, ILAST ) + CTEMP = C*H( JR, J+1 ) + S*H( JR, J ) + H( JR, J ) = -DCONJG( S )*H( JR, J+1 ) + C*H( JR, J ) + H( JR, J+1 ) = CTEMP + 120 CONTINUE + DO 130 JR = IFRSTM, J + CTEMP = C*T( JR, J+1 ) + S*T( JR, J ) + T( JR, J ) = -DCONJG( S )*T( JR, J+1 ) + C*T( JR, J ) + T( JR, J+1 ) = CTEMP + 130 CONTINUE + IF( ILZ ) THEN + DO 140 JR = 1, N + CTEMP = C*Z( JR, J+1 ) + S*Z( JR, J ) + Z( JR, J ) = -DCONJG( S )*Z( JR, J+1 ) + C*Z( JR, J ) + Z( JR, J+1 ) = CTEMP + 140 CONTINUE + END IF + 150 CONTINUE +* + 160 CONTINUE +* + 170 CONTINUE +* +* Drop-through = non-convergence +* + 180 CONTINUE + INFO = ILAST + GO TO 210 +* +* Successful completion of all QZ steps +* + 190 CONTINUE +* +* Set Eigenvalues 1:ILO-1 +* + DO 200 J = 1, ILO - 1 + ABSB = ABS( T( J, J ) ) + IF( ABSB.GT.SAFMIN ) THEN + SIGNBC = DCONJG( T( J, J ) / ABSB ) + T( J, J ) = ABSB + IF( ILSCHR ) THEN + CALL ZSCAL( J-1, SIGNBC, T( 1, J ), 1 ) + CALL ZSCAL( J, SIGNBC, H( 1, J ), 1 ) + ELSE + H( J, J ) = H( J, J )*SIGNBC + END IF + IF( ILZ ) + $ CALL ZSCAL( N, SIGNBC, Z( 1, J ), 1 ) + ELSE + T( J, J ) = CZERO + END IF + ALPHA( J ) = H( J, J ) + BETA( J ) = T( J, J ) + 200 CONTINUE +* +* Normal Termination +* + INFO = 0 +* +* Exit (other than argument error) -- return optimal workspace size +* + 210 CONTINUE + WORK( 1 ) = DCMPLX( N ) + RETURN +* +* End of ZHGEQZ +* + END |