diff options
author | Sandeep Gupta | 2017-06-18 23:55:40 +0530 |
---|---|---|
committer | Sandeep Gupta | 2017-06-18 23:55:40 +0530 |
commit | b43eccd4cffed5bd1017c5821524fb6e49202f78 (patch) | |
tree | 4c53d798252cbeae9bcf7dc9604524b20bb10f27 /2.3-1/src/fortran/lapack/zgeqpf.f | |
download | Scilab2C-b43eccd4cffed5bd1017c5821524fb6e49202f78.tar.gz Scilab2C-b43eccd4cffed5bd1017c5821524fb6e49202f78.tar.bz2 Scilab2C-b43eccd4cffed5bd1017c5821524fb6e49202f78.zip |
First commit
Diffstat (limited to '2.3-1/src/fortran/lapack/zgeqpf.f')
-rw-r--r-- | 2.3-1/src/fortran/lapack/zgeqpf.f | 234 |
1 files changed, 234 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/zgeqpf.f b/2.3-1/src/fortran/lapack/zgeqpf.f new file mode 100644 index 00000000..6d4f86f0 --- /dev/null +++ b/2.3-1/src/fortran/lapack/zgeqpf.f @@ -0,0 +1,234 @@ + SUBROUTINE ZGEQPF( M, N, A, LDA, JPVT, TAU, WORK, RWORK, INFO ) +* +* -- LAPACK deprecated driver routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + INTEGER INFO, LDA, M, N +* .. +* .. Array Arguments .. + INTEGER JPVT( * ) + DOUBLE PRECISION RWORK( * ) + COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * ) +* .. +* +* Purpose +* ======= +* +* This routine is deprecated and has been replaced by routine ZGEQP3. +* +* ZGEQPF computes a QR factorization with column pivoting of a +* complex M-by-N matrix A: A*P = Q*R. +* +* Arguments +* ========= +* +* M (input) INTEGER +* The number of rows of the matrix A. M >= 0. +* +* N (input) INTEGER +* The number of columns of the matrix A. N >= 0 +* +* A (input/output) COMPLEX*16 array, dimension (LDA,N) +* On entry, the M-by-N matrix A. +* On exit, the upper triangle of the array contains the +* min(M,N)-by-N upper triangular matrix R; the elements +* below the diagonal, together with the array TAU, +* represent the unitary matrix Q as a product of +* min(m,n) elementary reflectors. +* +* LDA (input) INTEGER +* The leading dimension of the array A. LDA >= max(1,M). +* +* JPVT (input/output) INTEGER array, dimension (N) +* On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted +* to the front of A*P (a leading column); if JPVT(i) = 0, +* the i-th column of A is a free column. +* On exit, if JPVT(i) = k, then the i-th column of A*P +* was the k-th column of A. +* +* TAU (output) COMPLEX*16 array, dimension (min(M,N)) +* The scalar factors of the elementary reflectors. +* +* WORK (workspace) COMPLEX*16 array, dimension (N) +* +* RWORK (workspace) DOUBLE PRECISION array, dimension (2*N) +* +* INFO (output) INTEGER +* = 0: successful exit +* < 0: if INFO = -i, the i-th argument had an illegal value +* +* Further Details +* =============== +* +* The matrix Q is represented as a product of elementary reflectors +* +* Q = H(1) H(2) . . . H(n) +* +* Each H(i) has the form +* +* H = I - tau * v * v' +* +* where tau is a complex scalar, and v is a complex vector with +* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). +* +* The matrix P is represented in jpvt as follows: If +* jpvt(j) = i +* then the jth column of P is the ith canonical unit vector. +* +* Partial column norm updating strategy modified by +* Z. Drmac and Z. Bujanovic, Dept. of Mathematics, +* University of Zagreb, Croatia. +* June 2006. +* For more details see LAPACK Working Note 176. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE + PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) +* .. +* .. Local Scalars .. + INTEGER I, ITEMP, J, MA, MN, PVT + DOUBLE PRECISION TEMP, TEMP2, TOL3Z + COMPLEX*16 AII +* .. +* .. External Subroutines .. + EXTERNAL XERBLA, ZGEQR2, ZLARF, ZLARFG, ZSWAP, ZUNM2R +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, DCMPLX, DCONJG, MAX, MIN, SQRT +* .. +* .. External Functions .. + INTEGER IDAMAX + DOUBLE PRECISION DLAMCH, DZNRM2 + EXTERNAL IDAMAX, DLAMCH, DZNRM2 +* .. +* .. Executable Statements .. +* +* Test the input arguments +* + INFO = 0 + IF( M.LT.0 ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -2 + ELSE IF( LDA.LT.MAX( 1, M ) ) THEN + INFO = -4 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'ZGEQPF', -INFO ) + RETURN + END IF +* + MN = MIN( M, N ) + TOL3Z = SQRT(DLAMCH('Epsilon')) +* +* Move initial columns up front +* + ITEMP = 1 + DO 10 I = 1, N + IF( JPVT( I ).NE.0 ) THEN + IF( I.NE.ITEMP ) THEN + CALL ZSWAP( M, A( 1, I ), 1, A( 1, ITEMP ), 1 ) + JPVT( I ) = JPVT( ITEMP ) + JPVT( ITEMP ) = I + ELSE + JPVT( I ) = I + END IF + ITEMP = ITEMP + 1 + ELSE + JPVT( I ) = I + END IF + 10 CONTINUE + ITEMP = ITEMP - 1 +* +* Compute the QR factorization and update remaining columns +* + IF( ITEMP.GT.0 ) THEN + MA = MIN( ITEMP, M ) + CALL ZGEQR2( M, MA, A, LDA, TAU, WORK, INFO ) + IF( MA.LT.N ) THEN + CALL ZUNM2R( 'Left', 'Conjugate transpose', M, N-MA, MA, A, + $ LDA, TAU, A( 1, MA+1 ), LDA, WORK, INFO ) + END IF + END IF +* + IF( ITEMP.LT.MN ) THEN +* +* Initialize partial column norms. The first n elements of +* work store the exact column norms. +* + DO 20 I = ITEMP + 1, N + RWORK( I ) = DZNRM2( M-ITEMP, A( ITEMP+1, I ), 1 ) + RWORK( N+I ) = RWORK( I ) + 20 CONTINUE +* +* Compute factorization +* + DO 40 I = ITEMP + 1, MN +* +* Determine ith pivot column and swap if necessary +* + PVT = ( I-1 ) + IDAMAX( N-I+1, RWORK( I ), 1 ) +* + IF( PVT.NE.I ) THEN + CALL ZSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 ) + ITEMP = JPVT( PVT ) + JPVT( PVT ) = JPVT( I ) + JPVT( I ) = ITEMP + RWORK( PVT ) = RWORK( I ) + RWORK( N+PVT ) = RWORK( N+I ) + END IF +* +* Generate elementary reflector H(i) +* + AII = A( I, I ) + CALL ZLARFG( M-I+1, AII, A( MIN( I+1, M ), I ), 1, + $ TAU( I ) ) + A( I, I ) = AII +* + IF( I.LT.N ) THEN +* +* Apply H(i) to A(i:m,i+1:n) from the left +* + AII = A( I, I ) + A( I, I ) = DCMPLX( ONE ) + CALL ZLARF( 'Left', M-I+1, N-I, A( I, I ), 1, + $ DCONJG( TAU( I ) ), A( I, I+1 ), LDA, WORK ) + A( I, I ) = AII + END IF +* +* Update partial column norms +* + DO 30 J = I + 1, N + IF( RWORK( J ).NE.ZERO ) THEN +* +* NOTE: The following 4 lines follow from the analysis in +* Lapack Working Note 176. +* + TEMP = ABS( A( I, J ) ) / RWORK( J ) + TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) ) + TEMP2 = TEMP*( RWORK( J ) / RWORK( N+J ) )**2 + IF( TEMP2 .LE. TOL3Z ) THEN + IF( M-I.GT.0 ) THEN + RWORK( J ) = DZNRM2( M-I, A( I+1, J ), 1 ) + RWORK( N+J ) = RWORK( J ) + ELSE + RWORK( J ) = ZERO + RWORK( N+J ) = ZERO + END IF + ELSE + RWORK( J ) = RWORK( J )*SQRT( TEMP ) + END IF + END IF + 30 CONTINUE +* + 40 CONTINUE + END IF + RETURN +* +* End of ZGEQPF +* + END |