diff options
author | Sandeep Gupta | 2017-06-18 23:55:40 +0530 |
---|---|---|
committer | Sandeep Gupta | 2017-06-18 23:55:40 +0530 |
commit | b43eccd4cffed5bd1017c5821524fb6e49202f78 (patch) | |
tree | 4c53d798252cbeae9bcf7dc9604524b20bb10f27 /2.3-1/src/fortran/lapack/zgeqp3.f | |
download | Scilab2C-b43eccd4cffed5bd1017c5821524fb6e49202f78.tar.gz Scilab2C-b43eccd4cffed5bd1017c5821524fb6e49202f78.tar.bz2 Scilab2C-b43eccd4cffed5bd1017c5821524fb6e49202f78.zip |
First commit
Diffstat (limited to '2.3-1/src/fortran/lapack/zgeqp3.f')
-rw-r--r-- | 2.3-1/src/fortran/lapack/zgeqp3.f | 293 |
1 files changed, 293 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/zgeqp3.f b/2.3-1/src/fortran/lapack/zgeqp3.f new file mode 100644 index 00000000..32bf3367 --- /dev/null +++ b/2.3-1/src/fortran/lapack/zgeqp3.f @@ -0,0 +1,293 @@ + SUBROUTINE ZGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK, + $ INFO ) +* +* -- LAPACK routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + INTEGER INFO, LDA, LWORK, M, N +* .. +* .. Array Arguments .. + INTEGER JPVT( * ) + DOUBLE PRECISION RWORK( * ) + COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * ) +* .. +* +* Purpose +* ======= +* +* ZGEQP3 computes a QR factorization with column pivoting of a +* matrix A: A*P = Q*R using Level 3 BLAS. +* +* Arguments +* ========= +* +* M (input) INTEGER +* The number of rows of the matrix A. M >= 0. +* +* N (input) INTEGER +* The number of columns of the matrix A. N >= 0. +* +* A (input/output) COMPLEX*16 array, dimension (LDA,N) +* On entry, the M-by-N matrix A. +* On exit, the upper triangle of the array contains the +* min(M,N)-by-N upper trapezoidal matrix R; the elements below +* the diagonal, together with the array TAU, represent the +* unitary matrix Q as a product of min(M,N) elementary +* reflectors. +* +* LDA (input) INTEGER +* The leading dimension of the array A. LDA >= max(1,M). +* +* JPVT (input/output) INTEGER array, dimension (N) +* On entry, if JPVT(J).ne.0, the J-th column of A is permuted +* to the front of A*P (a leading column); if JPVT(J)=0, +* the J-th column of A is a free column. +* On exit, if JPVT(J)=K, then the J-th column of A*P was the +* the K-th column of A. +* +* TAU (output) COMPLEX*16 array, dimension (min(M,N)) +* The scalar factors of the elementary reflectors. +* +* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) +* On exit, if INFO=0, WORK(1) returns the optimal LWORK. +* +* LWORK (input) INTEGER +* The dimension of the array WORK. LWORK >= N+1. +* For optimal performance LWORK >= ( N+1 )*NB, where NB +* is the optimal blocksize. +* +* If LWORK = -1, then a workspace query is assumed; the routine +* only calculates the optimal size of the WORK array, returns +* this value as the first entry of the WORK array, and no error +* message related to LWORK is issued by XERBLA. +* +* RWORK (workspace) DOUBLE PRECISION array, dimension (2*N) +* +* INFO (output) INTEGER +* = 0: successful exit. +* < 0: if INFO = -i, the i-th argument had an illegal value. +* +* Further Details +* =============== +* +* The matrix Q is represented as a product of elementary reflectors +* +* Q = H(1) H(2) . . . H(k), where k = min(m,n). +* +* Each H(i) has the form +* +* H(i) = I - tau * v * v' +* +* where tau is a real/complex scalar, and v is a real/complex vector +* with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in +* A(i+1:m,i), and tau in TAU(i). +* +* Based on contributions by +* G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain +* X. Sun, Computer Science Dept., Duke University, USA +* +* ===================================================================== +* +* .. Parameters .. + INTEGER INB, INBMIN, IXOVER + PARAMETER ( INB = 1, INBMIN = 2, IXOVER = 3 ) +* .. +* .. Local Scalars .. + LOGICAL LQUERY + INTEGER FJB, IWS, J, JB, LWKOPT, MINMN, MINWS, NA, NB, + $ NBMIN, NFXD, NX, SM, SMINMN, SN, TOPBMN +* .. +* .. External Subroutines .. + EXTERNAL XERBLA, ZGEQRF, ZLAQP2, ZLAQPS, ZSWAP, ZUNMQR +* .. +* .. External Functions .. + INTEGER ILAENV + DOUBLE PRECISION DZNRM2 + EXTERNAL ILAENV, DZNRM2 +* .. +* .. Intrinsic Functions .. + INTRINSIC INT, MAX, MIN +* .. +* .. Executable Statements .. +* +* Test input arguments +* ==================== +* + INFO = 0 + LQUERY = ( LWORK.EQ.-1 ) + IF( M.LT.0 ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -2 + ELSE IF( LDA.LT.MAX( 1, M ) ) THEN + INFO = -4 + END IF +* + IF( INFO.EQ.0 ) THEN + MINMN = MIN( M, N ) + IF( MINMN.EQ.0 ) THEN + IWS = 1 + LWKOPT = 1 + ELSE + IWS = N + 1 + NB = ILAENV( INB, 'ZGEQRF', ' ', M, N, -1, -1 ) + LWKOPT = ( N + 1 )*NB + END IF + WORK( 1 ) = LWKOPT +* + IF( ( LWORK.LT.IWS ) .AND. .NOT.LQUERY ) THEN + INFO = -8 + END IF + END IF +* + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'ZGEQP3', -INFO ) + RETURN + ELSE IF( LQUERY ) THEN + RETURN + END IF +* +* Quick return if possible. +* + IF( MINMN.EQ.0 ) THEN + RETURN + END IF +* +* Move initial columns up front. +* + NFXD = 1 + DO 10 J = 1, N + IF( JPVT( J ).NE.0 ) THEN + IF( J.NE.NFXD ) THEN + CALL ZSWAP( M, A( 1, J ), 1, A( 1, NFXD ), 1 ) + JPVT( J ) = JPVT( NFXD ) + JPVT( NFXD ) = J + ELSE + JPVT( J ) = J + END IF + NFXD = NFXD + 1 + ELSE + JPVT( J ) = J + END IF + 10 CONTINUE + NFXD = NFXD - 1 +* +* Factorize fixed columns +* ======================= +* +* Compute the QR factorization of fixed columns and update +* remaining columns. +* + IF( NFXD.GT.0 ) THEN + NA = MIN( M, NFXD ) +*CC CALL ZGEQR2( M, NA, A, LDA, TAU, WORK, INFO ) + CALL ZGEQRF( M, NA, A, LDA, TAU, WORK, LWORK, INFO ) + IWS = MAX( IWS, INT( WORK( 1 ) ) ) + IF( NA.LT.N ) THEN +*CC CALL ZUNM2R( 'Left', 'Conjugate Transpose', M, N-NA, +*CC $ NA, A, LDA, TAU, A( 1, NA+1 ), LDA, WORK, +*CC $ INFO ) + CALL ZUNMQR( 'Left', 'Conjugate Transpose', M, N-NA, NA, A, + $ LDA, TAU, A( 1, NA+1 ), LDA, WORK, LWORK, + $ INFO ) + IWS = MAX( IWS, INT( WORK( 1 ) ) ) + END IF + END IF +* +* Factorize free columns +* ====================== +* + IF( NFXD.LT.MINMN ) THEN +* + SM = M - NFXD + SN = N - NFXD + SMINMN = MINMN - NFXD +* +* Determine the block size. +* + NB = ILAENV( INB, 'ZGEQRF', ' ', SM, SN, -1, -1 ) + NBMIN = 2 + NX = 0 +* + IF( ( NB.GT.1 ) .AND. ( NB.LT.SMINMN ) ) THEN +* +* Determine when to cross over from blocked to unblocked code. +* + NX = MAX( 0, ILAENV( IXOVER, 'ZGEQRF', ' ', SM, SN, -1, + $ -1 ) ) +* +* + IF( NX.LT.SMINMN ) THEN +* +* Determine if workspace is large enough for blocked code. +* + MINWS = ( SN+1 )*NB + IWS = MAX( IWS, MINWS ) + IF( LWORK.LT.MINWS ) THEN +* +* Not enough workspace to use optimal NB: Reduce NB and +* determine the minimum value of NB. +* + NB = LWORK / ( SN+1 ) + NBMIN = MAX( 2, ILAENV( INBMIN, 'ZGEQRF', ' ', SM, SN, + $ -1, -1 ) ) +* +* + END IF + END IF + END IF +* +* Initialize partial column norms. The first N elements of work +* store the exact column norms. +* + DO 20 J = NFXD + 1, N + RWORK( J ) = DZNRM2( SM, A( NFXD+1, J ), 1 ) + RWORK( N+J ) = RWORK( J ) + 20 CONTINUE +* + IF( ( NB.GE.NBMIN ) .AND. ( NB.LT.SMINMN ) .AND. + $ ( NX.LT.SMINMN ) ) THEN +* +* Use blocked code initially. +* + J = NFXD + 1 +* +* Compute factorization: while loop. +* +* + TOPBMN = MINMN - NX + 30 CONTINUE + IF( J.LE.TOPBMN ) THEN + JB = MIN( NB, TOPBMN-J+1 ) +* +* Factorize JB columns among columns J:N. +* + CALL ZLAQPS( M, N-J+1, J-1, JB, FJB, A( 1, J ), LDA, + $ JPVT( J ), TAU( J ), RWORK( J ), + $ RWORK( N+J ), WORK( 1 ), WORK( JB+1 ), + $ N-J+1 ) +* + J = J + FJB + GO TO 30 + END IF + ELSE + J = NFXD + 1 + END IF +* +* Use unblocked code to factor the last or only block. +* +* + IF( J.LE.MINMN ) + $ CALL ZLAQP2( M, N-J+1, J-1, A( 1, J ), LDA, JPVT( J ), + $ TAU( J ), RWORK( J ), RWORK( N+J ), WORK( 1 ) ) +* + END IF +* + WORK( 1 ) = IWS + RETURN +* +* End of ZGEQP3 +* + END |