summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/zgebal.f
diff options
context:
space:
mode:
authorAnkit Raj2017-06-21 10:26:59 +0530
committerAnkit Raj2017-06-21 10:26:59 +0530
commita555820564d9f2e95ca8c97871339d3a5a2081c3 (patch)
treeadb074b66a8e6750209880e6932305ce0a94c8bf /2.3-1/src/fortran/lapack/zgebal.f
downloadScilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.gz
Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.bz2
Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.zip
Updated Scilab2C
Diffstat (limited to '2.3-1/src/fortran/lapack/zgebal.f')
-rw-r--r--2.3-1/src/fortran/lapack/zgebal.f330
1 files changed, 330 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/zgebal.f b/2.3-1/src/fortran/lapack/zgebal.f
new file mode 100644
index 00000000..67ac2e14
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/zgebal.f
@@ -0,0 +1,330 @@
+ SUBROUTINE ZGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER JOB
+ INTEGER IHI, ILO, INFO, LDA, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION SCALE( * )
+ COMPLEX*16 A( LDA, * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZGEBAL balances a general complex matrix A. This involves, first,
+* permuting A by a similarity transformation to isolate eigenvalues
+* in the first 1 to ILO-1 and last IHI+1 to N elements on the
+* diagonal; and second, applying a diagonal similarity transformation
+* to rows and columns ILO to IHI to make the rows and columns as
+* close in norm as possible. Both steps are optional.
+*
+* Balancing may reduce the 1-norm of the matrix, and improve the
+* accuracy of the computed eigenvalues and/or eigenvectors.
+*
+* Arguments
+* =========
+*
+* JOB (input) CHARACTER*1
+* Specifies the operations to be performed on A:
+* = 'N': none: simply set ILO = 1, IHI = N, SCALE(I) = 1.0
+* for i = 1,...,N;
+* = 'P': permute only;
+* = 'S': scale only;
+* = 'B': both permute and scale.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* A (input/output) COMPLEX*16 array, dimension (LDA,N)
+* On entry, the input matrix A.
+* On exit, A is overwritten by the balanced matrix.
+* If JOB = 'N', A is not referenced.
+* See Further Details.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* ILO (output) INTEGER
+* IHI (output) INTEGER
+* ILO and IHI are set to integers such that on exit
+* A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N.
+* If JOB = 'N' or 'S', ILO = 1 and IHI = N.
+*
+* SCALE (output) DOUBLE PRECISION array, dimension (N)
+* Details of the permutations and scaling factors applied to
+* A. If P(j) is the index of the row and column interchanged
+* with row and column j and D(j) is the scaling factor
+* applied to row and column j, then
+* SCALE(j) = P(j) for j = 1,...,ILO-1
+* = D(j) for j = ILO,...,IHI
+* = P(j) for j = IHI+1,...,N.
+* The order in which the interchanges are made is N to IHI+1,
+* then 1 to ILO-1.
+*
+* INFO (output) INTEGER
+* = 0: successful exit.
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+*
+* Further Details
+* ===============
+*
+* The permutations consist of row and column interchanges which put
+* the matrix in the form
+*
+* ( T1 X Y )
+* P A P = ( 0 B Z )
+* ( 0 0 T2 )
+*
+* where T1 and T2 are upper triangular matrices whose eigenvalues lie
+* along the diagonal. The column indices ILO and IHI mark the starting
+* and ending columns of the submatrix B. Balancing consists of applying
+* a diagonal similarity transformation inv(D) * B * D to make the
+* 1-norms of each row of B and its corresponding column nearly equal.
+* The output matrix is
+*
+* ( T1 X*D Y )
+* ( 0 inv(D)*B*D inv(D)*Z ).
+* ( 0 0 T2 )
+*
+* Information about the permutations P and the diagonal matrix D is
+* returned in the vector SCALE.
+*
+* This subroutine is based on the EISPACK routine CBAL.
+*
+* Modified by Tzu-Yi Chen, Computer Science Division, University of
+* California at Berkeley, USA
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+ DOUBLE PRECISION SCLFAC
+ PARAMETER ( SCLFAC = 2.0D+0 )
+ DOUBLE PRECISION FACTOR
+ PARAMETER ( FACTOR = 0.95D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL NOCONV
+ INTEGER I, ICA, IEXC, IRA, J, K, L, M
+ DOUBLE PRECISION C, CA, F, G, R, RA, S, SFMAX1, SFMAX2, SFMIN1,
+ $ SFMIN2
+ COMPLEX*16 CDUM
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER IZAMAX
+ DOUBLE PRECISION DLAMCH
+ EXTERNAL LSAME, IZAMAX, DLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA, ZDSCAL, ZSWAP
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, DIMAG, MAX, MIN
+* ..
+* .. Statement Functions ..
+ DOUBLE PRECISION CABS1
+* ..
+* .. Statement Function definitions ..
+ CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters
+*
+ INFO = 0
+ IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
+ $ .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -4
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZGEBAL', -INFO )
+ RETURN
+ END IF
+*
+ K = 1
+ L = N
+*
+ IF( N.EQ.0 )
+ $ GO TO 210
+*
+ IF( LSAME( JOB, 'N' ) ) THEN
+ DO 10 I = 1, N
+ SCALE( I ) = ONE
+ 10 CONTINUE
+ GO TO 210
+ END IF
+*
+ IF( LSAME( JOB, 'S' ) )
+ $ GO TO 120
+*
+* Permutation to isolate eigenvalues if possible
+*
+ GO TO 50
+*
+* Row and column exchange.
+*
+ 20 CONTINUE
+ SCALE( M ) = J
+ IF( J.EQ.M )
+ $ GO TO 30
+*
+ CALL ZSWAP( L, A( 1, J ), 1, A( 1, M ), 1 )
+ CALL ZSWAP( N-K+1, A( J, K ), LDA, A( M, K ), LDA )
+*
+ 30 CONTINUE
+ GO TO ( 40, 80 )IEXC
+*
+* Search for rows isolating an eigenvalue and push them down.
+*
+ 40 CONTINUE
+ IF( L.EQ.1 )
+ $ GO TO 210
+ L = L - 1
+*
+ 50 CONTINUE
+ DO 70 J = L, 1, -1
+*
+ DO 60 I = 1, L
+ IF( I.EQ.J )
+ $ GO TO 60
+ IF( DBLE( A( J, I ) ).NE.ZERO .OR. DIMAG( A( J, I ) ).NE.
+ $ ZERO )GO TO 70
+ 60 CONTINUE
+*
+ M = L
+ IEXC = 1
+ GO TO 20
+ 70 CONTINUE
+*
+ GO TO 90
+*
+* Search for columns isolating an eigenvalue and push them left.
+*
+ 80 CONTINUE
+ K = K + 1
+*
+ 90 CONTINUE
+ DO 110 J = K, L
+*
+ DO 100 I = K, L
+ IF( I.EQ.J )
+ $ GO TO 100
+ IF( DBLE( A( I, J ) ).NE.ZERO .OR. DIMAG( A( I, J ) ).NE.
+ $ ZERO )GO TO 110
+ 100 CONTINUE
+*
+ M = K
+ IEXC = 2
+ GO TO 20
+ 110 CONTINUE
+*
+ 120 CONTINUE
+ DO 130 I = K, L
+ SCALE( I ) = ONE
+ 130 CONTINUE
+*
+ IF( LSAME( JOB, 'P' ) )
+ $ GO TO 210
+*
+* Balance the submatrix in rows K to L.
+*
+* Iterative loop for norm reduction
+*
+ SFMIN1 = DLAMCH( 'S' ) / DLAMCH( 'P' )
+ SFMAX1 = ONE / SFMIN1
+ SFMIN2 = SFMIN1*SCLFAC
+ SFMAX2 = ONE / SFMIN2
+ 140 CONTINUE
+ NOCONV = .FALSE.
+*
+ DO 200 I = K, L
+ C = ZERO
+ R = ZERO
+*
+ DO 150 J = K, L
+ IF( J.EQ.I )
+ $ GO TO 150
+ C = C + CABS1( A( J, I ) )
+ R = R + CABS1( A( I, J ) )
+ 150 CONTINUE
+ ICA = IZAMAX( L, A( 1, I ), 1 )
+ CA = ABS( A( ICA, I ) )
+ IRA = IZAMAX( N-K+1, A( I, K ), LDA )
+ RA = ABS( A( I, IRA+K-1 ) )
+*
+* Guard against zero C or R due to underflow.
+*
+ IF( C.EQ.ZERO .OR. R.EQ.ZERO )
+ $ GO TO 200
+ G = R / SCLFAC
+ F = ONE
+ S = C + R
+ 160 CONTINUE
+ IF( C.GE.G .OR. MAX( F, C, CA ).GE.SFMAX2 .OR.
+ $ MIN( R, G, RA ).LE.SFMIN2 )GO TO 170
+ F = F*SCLFAC
+ C = C*SCLFAC
+ CA = CA*SCLFAC
+ R = R / SCLFAC
+ G = G / SCLFAC
+ RA = RA / SCLFAC
+ GO TO 160
+*
+ 170 CONTINUE
+ G = C / SCLFAC
+ 180 CONTINUE
+ IF( G.LT.R .OR. MAX( R, RA ).GE.SFMAX2 .OR.
+ $ MIN( F, C, G, CA ).LE.SFMIN2 )GO TO 190
+ F = F / SCLFAC
+ C = C / SCLFAC
+ G = G / SCLFAC
+ CA = CA / SCLFAC
+ R = R*SCLFAC
+ RA = RA*SCLFAC
+ GO TO 180
+*
+* Now balance.
+*
+ 190 CONTINUE
+ IF( ( C+R ).GE.FACTOR*S )
+ $ GO TO 200
+ IF( F.LT.ONE .AND. SCALE( I ).LT.ONE ) THEN
+ IF( F*SCALE( I ).LE.SFMIN1 )
+ $ GO TO 200
+ END IF
+ IF( F.GT.ONE .AND. SCALE( I ).GT.ONE ) THEN
+ IF( SCALE( I ).GE.SFMAX1 / F )
+ $ GO TO 200
+ END IF
+ G = ONE / F
+ SCALE( I ) = SCALE( I )*F
+ NOCONV = .TRUE.
+*
+ CALL ZDSCAL( N-K+1, G, A( I, K ), LDA )
+ CALL ZDSCAL( L, F, A( 1, I ), 1 )
+*
+ 200 CONTINUE
+*
+ IF( NOCONV )
+ $ GO TO 140
+*
+ 210 CONTINUE
+ ILO = K
+ IHI = L
+*
+ RETURN
+*
+* End of ZGEBAL
+*
+ END