summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dtgsy2.f
diff options
context:
space:
mode:
authoryash11122017-07-07 21:20:49 +0530
committeryash11122017-07-07 21:20:49 +0530
commit9e5793a7b05b23e6044a6d7a9ddd5db39ba375f0 (patch)
treef50d6e06d8fe6bc1a9053ef10d4b4d857800ab51 /2.3-1/src/fortran/lapack/dtgsy2.f
downloadScilab2C-9e5793a7b05b23e6044a6d7a9ddd5db39ba375f0.tar.gz
Scilab2C-9e5793a7b05b23e6044a6d7a9ddd5db39ba375f0.tar.bz2
Scilab2C-9e5793a7b05b23e6044a6d7a9ddd5db39ba375f0.zip
sci2c arduino updated
Diffstat (limited to '2.3-1/src/fortran/lapack/dtgsy2.f')
-rw-r--r--2.3-1/src/fortran/lapack/dtgsy2.f956
1 files changed, 956 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dtgsy2.f b/2.3-1/src/fortran/lapack/dtgsy2.f
new file mode 100644
index 00000000..3ebc912f
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dtgsy2.f
@@ -0,0 +1,956 @@
+ SUBROUTINE DTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
+ $ LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL,
+ $ IWORK, PQ, INFO )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER TRANS
+ INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N,
+ $ PQ
+ DOUBLE PRECISION RDSCAL, RDSUM, SCALE
+* ..
+* .. Array Arguments ..
+ INTEGER IWORK( * )
+ DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ),
+ $ D( LDD, * ), E( LDE, * ), F( LDF, * )
+* ..
+*
+* Purpose
+* =======
+*
+* DTGSY2 solves the generalized Sylvester equation:
+*
+* A * R - L * B = scale * C (1)
+* D * R - L * E = scale * F,
+*
+* using Level 1 and 2 BLAS. where R and L are unknown M-by-N matrices,
+* (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M,
+* N-by-N and M-by-N, respectively, with real entries. (A, D) and (B, E)
+* must be in generalized Schur canonical form, i.e. A, B are upper
+* quasi triangular and D, E are upper triangular. The solution (R, L)
+* overwrites (C, F). 0 <= SCALE <= 1 is an output scaling factor
+* chosen to avoid overflow.
+*
+* In matrix notation solving equation (1) corresponds to solve
+* Z*x = scale*b, where Z is defined as
+*
+* Z = [ kron(In, A) -kron(B', Im) ] (2)
+* [ kron(In, D) -kron(E', Im) ],
+*
+* Ik is the identity matrix of size k and X' is the transpose of X.
+* kron(X, Y) is the Kronecker product between the matrices X and Y.
+* In the process of solving (1), we solve a number of such systems
+* where Dim(In), Dim(In) = 1 or 2.
+*
+* If TRANS = 'T', solve the transposed system Z'*y = scale*b for y,
+* which is equivalent to solve for R and L in
+*
+* A' * R + D' * L = scale * C (3)
+* R * B' + L * E' = scale * -F
+*
+* This case is used to compute an estimate of Dif[(A, D), (B, E)] =
+* sigma_min(Z) using reverse communicaton with DLACON.
+*
+* DTGSY2 also (IJOB >= 1) contributes to the computation in STGSYL
+* of an upper bound on the separation between to matrix pairs. Then
+* the input (A, D), (B, E) are sub-pencils of the matrix pair in
+* DTGSYL. See STGSYL for details.
+*
+* Arguments
+* =========
+*
+* TRANS (input) CHARACTER*1
+* = 'N', solve the generalized Sylvester equation (1).
+* = 'T': solve the 'transposed' system (3).
+*
+* IJOB (input) INTEGER
+* Specifies what kind of functionality to be performed.
+* = 0: solve (1) only.
+* = 1: A contribution from this subsystem to a Frobenius
+* norm-based estimate of the separation between two matrix
+* pairs is computed. (look ahead strategy is used).
+* = 2: A contribution from this subsystem to a Frobenius
+* norm-based estimate of the separation between two matrix
+* pairs is computed. (DGECON on sub-systems is used.)
+* Not referenced if TRANS = 'T'.
+*
+* M (input) INTEGER
+* On entry, M specifies the order of A and D, and the row
+* dimension of C, F, R and L.
+*
+* N (input) INTEGER
+* On entry, N specifies the order of B and E, and the column
+* dimension of C, F, R and L.
+*
+* A (input) DOUBLE PRECISION array, dimension (LDA, M)
+* On entry, A contains an upper quasi triangular matrix.
+*
+* LDA (input) INTEGER
+* The leading dimension of the matrix A. LDA >= max(1, M).
+*
+* B (input) DOUBLE PRECISION array, dimension (LDB, N)
+* On entry, B contains an upper quasi triangular matrix.
+*
+* LDB (input) INTEGER
+* The leading dimension of the matrix B. LDB >= max(1, N).
+*
+* C (input/output) DOUBLE PRECISION array, dimension (LDC, N)
+* On entry, C contains the right-hand-side of the first matrix
+* equation in (1).
+* On exit, if IJOB = 0, C has been overwritten by the
+* solution R.
+*
+* LDC (input) INTEGER
+* The leading dimension of the matrix C. LDC >= max(1, M).
+*
+* D (input) DOUBLE PRECISION array, dimension (LDD, M)
+* On entry, D contains an upper triangular matrix.
+*
+* LDD (input) INTEGER
+* The leading dimension of the matrix D. LDD >= max(1, M).
+*
+* E (input) DOUBLE PRECISION array, dimension (LDE, N)
+* On entry, E contains an upper triangular matrix.
+*
+* LDE (input) INTEGER
+* The leading dimension of the matrix E. LDE >= max(1, N).
+*
+* F (input/output) DOUBLE PRECISION array, dimension (LDF, N)
+* On entry, F contains the right-hand-side of the second matrix
+* equation in (1).
+* On exit, if IJOB = 0, F has been overwritten by the
+* solution L.
+*
+* LDF (input) INTEGER
+* The leading dimension of the matrix F. LDF >= max(1, M).
+*
+* SCALE (output) DOUBLE PRECISION
+* On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions
+* R and L (C and F on entry) will hold the solutions to a
+* slightly perturbed system but the input matrices A, B, D and
+* E have not been changed. If SCALE = 0, R and L will hold the
+* solutions to the homogeneous system with C = F = 0. Normally,
+* SCALE = 1.
+*
+* RDSUM (input/output) DOUBLE PRECISION
+* On entry, the sum of squares of computed contributions to
+* the Dif-estimate under computation by DTGSYL, where the
+* scaling factor RDSCAL (see below) has been factored out.
+* On exit, the corresponding sum of squares updated with the
+* contributions from the current sub-system.
+* If TRANS = 'T' RDSUM is not touched.
+* NOTE: RDSUM only makes sense when DTGSY2 is called by STGSYL.
+*
+* RDSCAL (input/output) DOUBLE PRECISION
+* On entry, scaling factor used to prevent overflow in RDSUM.
+* On exit, RDSCAL is updated w.r.t. the current contributions
+* in RDSUM.
+* If TRANS = 'T', RDSCAL is not touched.
+* NOTE: RDSCAL only makes sense when DTGSY2 is called by
+* DTGSYL.
+*
+* IWORK (workspace) INTEGER array, dimension (M+N+2)
+*
+* PQ (output) INTEGER
+* On exit, the number of subsystems (of size 2-by-2, 4-by-4 and
+* 8-by-8) solved by this routine.
+*
+* INFO (output) INTEGER
+* On exit, if INFO is set to
+* =0: Successful exit
+* <0: If INFO = -i, the i-th argument had an illegal value.
+* >0: The matrix pairs (A, D) and (B, E) have common or very
+* close eigenvalues.
+*
+* Further Details
+* ===============
+*
+* Based on contributions by
+* Bo Kagstrom and Peter Poromaa, Department of Computing Science,
+* Umea University, S-901 87 Umea, Sweden.
+*
+* =====================================================================
+* Replaced various illegal calls to DCOPY by calls to DLASET.
+* Sven Hammarling, 27/5/02.
+*
+* .. Parameters ..
+ INTEGER LDZ
+ PARAMETER ( LDZ = 8 )
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL NOTRAN
+ INTEGER I, IE, IERR, II, IS, ISP1, J, JE, JJ, JS, JSP1,
+ $ K, MB, NB, P, Q, ZDIM
+ DOUBLE PRECISION ALPHA, SCALOC
+* ..
+* .. Local Arrays ..
+ INTEGER IPIV( LDZ ), JPIV( LDZ )
+ DOUBLE PRECISION RHS( LDZ ), Z( LDZ, LDZ )
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL DAXPY, DCOPY, DGEMM, DGEMV, DGER, DGESC2,
+ $ DGETC2, DLASET, DLATDF, DSCAL, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX
+* ..
+* .. Executable Statements ..
+*
+* Decode and test input parameters
+*
+ INFO = 0
+ IERR = 0
+ NOTRAN = LSAME( TRANS, 'N' )
+ IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
+ INFO = -1
+ ELSE IF( NOTRAN ) THEN
+ IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.2 ) ) THEN
+ INFO = -2
+ END IF
+ END IF
+ IF( INFO.EQ.0 ) THEN
+ IF( M.LE.0 ) THEN
+ INFO = -3
+ ELSE IF( N.LE.0 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -5
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -8
+ ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
+ INFO = -10
+ ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
+ INFO = -12
+ ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
+ INFO = -14
+ ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
+ INFO = -16
+ END IF
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DTGSY2', -INFO )
+ RETURN
+ END IF
+*
+* Determine block structure of A
+*
+ PQ = 0
+ P = 0
+ I = 1
+ 10 CONTINUE
+ IF( I.GT.M )
+ $ GO TO 20
+ P = P + 1
+ IWORK( P ) = I
+ IF( I.EQ.M )
+ $ GO TO 20
+ IF( A( I+1, I ).NE.ZERO ) THEN
+ I = I + 2
+ ELSE
+ I = I + 1
+ END IF
+ GO TO 10
+ 20 CONTINUE
+ IWORK( P+1 ) = M + 1
+*
+* Determine block structure of B
+*
+ Q = P + 1
+ J = 1
+ 30 CONTINUE
+ IF( J.GT.N )
+ $ GO TO 40
+ Q = Q + 1
+ IWORK( Q ) = J
+ IF( J.EQ.N )
+ $ GO TO 40
+ IF( B( J+1, J ).NE.ZERO ) THEN
+ J = J + 2
+ ELSE
+ J = J + 1
+ END IF
+ GO TO 30
+ 40 CONTINUE
+ IWORK( Q+1 ) = N + 1
+ PQ = P*( Q-P-1 )
+*
+ IF( NOTRAN ) THEN
+*
+* Solve (I, J) - subsystem
+* A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
+* D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
+* for I = P, P - 1, ..., 1; J = 1, 2, ..., Q
+*
+ SCALE = ONE
+ SCALOC = ONE
+ DO 120 J = P + 2, Q
+ JS = IWORK( J )
+ JSP1 = JS + 1
+ JE = IWORK( J+1 ) - 1
+ NB = JE - JS + 1
+ DO 110 I = P, 1, -1
+*
+ IS = IWORK( I )
+ ISP1 = IS + 1
+ IE = IWORK( I+1 ) - 1
+ MB = IE - IS + 1
+ ZDIM = MB*NB*2
+*
+ IF( ( MB.EQ.1 ) .AND. ( NB.EQ.1 ) ) THEN
+*
+* Build a 2-by-2 system Z * x = RHS
+*
+ Z( 1, 1 ) = A( IS, IS )
+ Z( 2, 1 ) = D( IS, IS )
+ Z( 1, 2 ) = -B( JS, JS )
+ Z( 2, 2 ) = -E( JS, JS )
+*
+* Set up right hand side(s)
+*
+ RHS( 1 ) = C( IS, JS )
+ RHS( 2 ) = F( IS, JS )
+*
+* Solve Z * x = RHS
+*
+ CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
+ IF( IERR.GT.0 )
+ $ INFO = IERR
+*
+ IF( IJOB.EQ.0 ) THEN
+ CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
+ $ SCALOC )
+ IF( SCALOC.NE.ONE ) THEN
+ DO 50 K = 1, N
+ CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
+ CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
+ 50 CONTINUE
+ SCALE = SCALE*SCALOC
+ END IF
+ ELSE
+ CALL DLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM,
+ $ RDSCAL, IPIV, JPIV )
+ END IF
+*
+* Unpack solution vector(s)
+*
+ C( IS, JS ) = RHS( 1 )
+ F( IS, JS ) = RHS( 2 )
+*
+* Substitute R(I, J) and L(I, J) into remaining
+* equation.
+*
+ IF( I.GT.1 ) THEN
+ ALPHA = -RHS( 1 )
+ CALL DAXPY( IS-1, ALPHA, A( 1, IS ), 1, C( 1, JS ),
+ $ 1 )
+ CALL DAXPY( IS-1, ALPHA, D( 1, IS ), 1, F( 1, JS ),
+ $ 1 )
+ END IF
+ IF( J.LT.Q ) THEN
+ CALL DAXPY( N-JE, RHS( 2 ), B( JS, JE+1 ), LDB,
+ $ C( IS, JE+1 ), LDC )
+ CALL DAXPY( N-JE, RHS( 2 ), E( JS, JE+1 ), LDE,
+ $ F( IS, JE+1 ), LDF )
+ END IF
+*
+ ELSE IF( ( MB.EQ.1 ) .AND. ( NB.EQ.2 ) ) THEN
+*
+* Build a 4-by-4 system Z * x = RHS
+*
+ Z( 1, 1 ) = A( IS, IS )
+ Z( 2, 1 ) = ZERO
+ Z( 3, 1 ) = D( IS, IS )
+ Z( 4, 1 ) = ZERO
+*
+ Z( 1, 2 ) = ZERO
+ Z( 2, 2 ) = A( IS, IS )
+ Z( 3, 2 ) = ZERO
+ Z( 4, 2 ) = D( IS, IS )
+*
+ Z( 1, 3 ) = -B( JS, JS )
+ Z( 2, 3 ) = -B( JS, JSP1 )
+ Z( 3, 3 ) = -E( JS, JS )
+ Z( 4, 3 ) = -E( JS, JSP1 )
+*
+ Z( 1, 4 ) = -B( JSP1, JS )
+ Z( 2, 4 ) = -B( JSP1, JSP1 )
+ Z( 3, 4 ) = ZERO
+ Z( 4, 4 ) = -E( JSP1, JSP1 )
+*
+* Set up right hand side(s)
+*
+ RHS( 1 ) = C( IS, JS )
+ RHS( 2 ) = C( IS, JSP1 )
+ RHS( 3 ) = F( IS, JS )
+ RHS( 4 ) = F( IS, JSP1 )
+*
+* Solve Z * x = RHS
+*
+ CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
+ IF( IERR.GT.0 )
+ $ INFO = IERR
+*
+ IF( IJOB.EQ.0 ) THEN
+ CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
+ $ SCALOC )
+ IF( SCALOC.NE.ONE ) THEN
+ DO 60 K = 1, N
+ CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
+ CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
+ 60 CONTINUE
+ SCALE = SCALE*SCALOC
+ END IF
+ ELSE
+ CALL DLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM,
+ $ RDSCAL, IPIV, JPIV )
+ END IF
+*
+* Unpack solution vector(s)
+*
+ C( IS, JS ) = RHS( 1 )
+ C( IS, JSP1 ) = RHS( 2 )
+ F( IS, JS ) = RHS( 3 )
+ F( IS, JSP1 ) = RHS( 4 )
+*
+* Substitute R(I, J) and L(I, J) into remaining
+* equation.
+*
+ IF( I.GT.1 ) THEN
+ CALL DGER( IS-1, NB, -ONE, A( 1, IS ), 1, RHS( 1 ),
+ $ 1, C( 1, JS ), LDC )
+ CALL DGER( IS-1, NB, -ONE, D( 1, IS ), 1, RHS( 1 ),
+ $ 1, F( 1, JS ), LDF )
+ END IF
+ IF( J.LT.Q ) THEN
+ CALL DAXPY( N-JE, RHS( 3 ), B( JS, JE+1 ), LDB,
+ $ C( IS, JE+1 ), LDC )
+ CALL DAXPY( N-JE, RHS( 3 ), E( JS, JE+1 ), LDE,
+ $ F( IS, JE+1 ), LDF )
+ CALL DAXPY( N-JE, RHS( 4 ), B( JSP1, JE+1 ), LDB,
+ $ C( IS, JE+1 ), LDC )
+ CALL DAXPY( N-JE, RHS( 4 ), E( JSP1, JE+1 ), LDE,
+ $ F( IS, JE+1 ), LDF )
+ END IF
+*
+ ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.1 ) ) THEN
+*
+* Build a 4-by-4 system Z * x = RHS
+*
+ Z( 1, 1 ) = A( IS, IS )
+ Z( 2, 1 ) = A( ISP1, IS )
+ Z( 3, 1 ) = D( IS, IS )
+ Z( 4, 1 ) = ZERO
+*
+ Z( 1, 2 ) = A( IS, ISP1 )
+ Z( 2, 2 ) = A( ISP1, ISP1 )
+ Z( 3, 2 ) = D( IS, ISP1 )
+ Z( 4, 2 ) = D( ISP1, ISP1 )
+*
+ Z( 1, 3 ) = -B( JS, JS )
+ Z( 2, 3 ) = ZERO
+ Z( 3, 3 ) = -E( JS, JS )
+ Z( 4, 3 ) = ZERO
+*
+ Z( 1, 4 ) = ZERO
+ Z( 2, 4 ) = -B( JS, JS )
+ Z( 3, 4 ) = ZERO
+ Z( 4, 4 ) = -E( JS, JS )
+*
+* Set up right hand side(s)
+*
+ RHS( 1 ) = C( IS, JS )
+ RHS( 2 ) = C( ISP1, JS )
+ RHS( 3 ) = F( IS, JS )
+ RHS( 4 ) = F( ISP1, JS )
+*
+* Solve Z * x = RHS
+*
+ CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
+ IF( IERR.GT.0 )
+ $ INFO = IERR
+ IF( IJOB.EQ.0 ) THEN
+ CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
+ $ SCALOC )
+ IF( SCALOC.NE.ONE ) THEN
+ DO 70 K = 1, N
+ CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
+ CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
+ 70 CONTINUE
+ SCALE = SCALE*SCALOC
+ END IF
+ ELSE
+ CALL DLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM,
+ $ RDSCAL, IPIV, JPIV )
+ END IF
+*
+* Unpack solution vector(s)
+*
+ C( IS, JS ) = RHS( 1 )
+ C( ISP1, JS ) = RHS( 2 )
+ F( IS, JS ) = RHS( 3 )
+ F( ISP1, JS ) = RHS( 4 )
+*
+* Substitute R(I, J) and L(I, J) into remaining
+* equation.
+*
+ IF( I.GT.1 ) THEN
+ CALL DGEMV( 'N', IS-1, MB, -ONE, A( 1, IS ), LDA,
+ $ RHS( 1 ), 1, ONE, C( 1, JS ), 1 )
+ CALL DGEMV( 'N', IS-1, MB, -ONE, D( 1, IS ), LDD,
+ $ RHS( 1 ), 1, ONE, F( 1, JS ), 1 )
+ END IF
+ IF( J.LT.Q ) THEN
+ CALL DGER( MB, N-JE, ONE, RHS( 3 ), 1,
+ $ B( JS, JE+1 ), LDB, C( IS, JE+1 ), LDC )
+ CALL DGER( MB, N-JE, ONE, RHS( 3 ), 1,
+ $ E( JS, JE+1 ), LDB, F( IS, JE+1 ), LDC )
+ END IF
+*
+ ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.2 ) ) THEN
+*
+* Build an 8-by-8 system Z * x = RHS
+*
+ CALL DLASET( 'F', LDZ, LDZ, ZERO, ZERO, Z, LDZ )
+*
+ Z( 1, 1 ) = A( IS, IS )
+ Z( 2, 1 ) = A( ISP1, IS )
+ Z( 5, 1 ) = D( IS, IS )
+*
+ Z( 1, 2 ) = A( IS, ISP1 )
+ Z( 2, 2 ) = A( ISP1, ISP1 )
+ Z( 5, 2 ) = D( IS, ISP1 )
+ Z( 6, 2 ) = D( ISP1, ISP1 )
+*
+ Z( 3, 3 ) = A( IS, IS )
+ Z( 4, 3 ) = A( ISP1, IS )
+ Z( 7, 3 ) = D( IS, IS )
+*
+ Z( 3, 4 ) = A( IS, ISP1 )
+ Z( 4, 4 ) = A( ISP1, ISP1 )
+ Z( 7, 4 ) = D( IS, ISP1 )
+ Z( 8, 4 ) = D( ISP1, ISP1 )
+*
+ Z( 1, 5 ) = -B( JS, JS )
+ Z( 3, 5 ) = -B( JS, JSP1 )
+ Z( 5, 5 ) = -E( JS, JS )
+ Z( 7, 5 ) = -E( JS, JSP1 )
+*
+ Z( 2, 6 ) = -B( JS, JS )
+ Z( 4, 6 ) = -B( JS, JSP1 )
+ Z( 6, 6 ) = -E( JS, JS )
+ Z( 8, 6 ) = -E( JS, JSP1 )
+*
+ Z( 1, 7 ) = -B( JSP1, JS )
+ Z( 3, 7 ) = -B( JSP1, JSP1 )
+ Z( 7, 7 ) = -E( JSP1, JSP1 )
+*
+ Z( 2, 8 ) = -B( JSP1, JS )
+ Z( 4, 8 ) = -B( JSP1, JSP1 )
+ Z( 8, 8 ) = -E( JSP1, JSP1 )
+*
+* Set up right hand side(s)
+*
+ K = 1
+ II = MB*NB + 1
+ DO 80 JJ = 0, NB - 1
+ CALL DCOPY( MB, C( IS, JS+JJ ), 1, RHS( K ), 1 )
+ CALL DCOPY( MB, F( IS, JS+JJ ), 1, RHS( II ), 1 )
+ K = K + MB
+ II = II + MB
+ 80 CONTINUE
+*
+* Solve Z * x = RHS
+*
+ CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
+ IF( IERR.GT.0 )
+ $ INFO = IERR
+ IF( IJOB.EQ.0 ) THEN
+ CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
+ $ SCALOC )
+ IF( SCALOC.NE.ONE ) THEN
+ DO 90 K = 1, N
+ CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
+ CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
+ 90 CONTINUE
+ SCALE = SCALE*SCALOC
+ END IF
+ ELSE
+ CALL DLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM,
+ $ RDSCAL, IPIV, JPIV )
+ END IF
+*
+* Unpack solution vector(s)
+*
+ K = 1
+ II = MB*NB + 1
+ DO 100 JJ = 0, NB - 1
+ CALL DCOPY( MB, RHS( K ), 1, C( IS, JS+JJ ), 1 )
+ CALL DCOPY( MB, RHS( II ), 1, F( IS, JS+JJ ), 1 )
+ K = K + MB
+ II = II + MB
+ 100 CONTINUE
+*
+* Substitute R(I, J) and L(I, J) into remaining
+* equation.
+*
+ IF( I.GT.1 ) THEN
+ CALL DGEMM( 'N', 'N', IS-1, NB, MB, -ONE,
+ $ A( 1, IS ), LDA, RHS( 1 ), MB, ONE,
+ $ C( 1, JS ), LDC )
+ CALL DGEMM( 'N', 'N', IS-1, NB, MB, -ONE,
+ $ D( 1, IS ), LDD, RHS( 1 ), MB, ONE,
+ $ F( 1, JS ), LDF )
+ END IF
+ IF( J.LT.Q ) THEN
+ K = MB*NB + 1
+ CALL DGEMM( 'N', 'N', MB, N-JE, NB, ONE, RHS( K ),
+ $ MB, B( JS, JE+1 ), LDB, ONE,
+ $ C( IS, JE+1 ), LDC )
+ CALL DGEMM( 'N', 'N', MB, N-JE, NB, ONE, RHS( K ),
+ $ MB, E( JS, JE+1 ), LDE, ONE,
+ $ F( IS, JE+1 ), LDF )
+ END IF
+*
+ END IF
+*
+ 110 CONTINUE
+ 120 CONTINUE
+ ELSE
+*
+* Solve (I, J) - subsystem
+* A(I, I)' * R(I, J) + D(I, I)' * L(J, J) = C(I, J)
+* R(I, I) * B(J, J) + L(I, J) * E(J, J) = -F(I, J)
+* for I = 1, 2, ..., P, J = Q, Q - 1, ..., 1
+*
+ SCALE = ONE
+ SCALOC = ONE
+ DO 200 I = 1, P
+*
+ IS = IWORK( I )
+ ISP1 = IS + 1
+ IE = ( I+1 ) - 1
+ MB = IE - IS + 1
+ DO 190 J = Q, P + 2, -1
+*
+ JS = IWORK( J )
+ JSP1 = JS + 1
+ JE = IWORK( J+1 ) - 1
+ NB = JE - JS + 1
+ ZDIM = MB*NB*2
+ IF( ( MB.EQ.1 ) .AND. ( NB.EQ.1 ) ) THEN
+*
+* Build a 2-by-2 system Z' * x = RHS
+*
+ Z( 1, 1 ) = A( IS, IS )
+ Z( 2, 1 ) = -B( JS, JS )
+ Z( 1, 2 ) = D( IS, IS )
+ Z( 2, 2 ) = -E( JS, JS )
+*
+* Set up right hand side(s)
+*
+ RHS( 1 ) = C( IS, JS )
+ RHS( 2 ) = F( IS, JS )
+*
+* Solve Z' * x = RHS
+*
+ CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
+ IF( IERR.GT.0 )
+ $ INFO = IERR
+*
+ CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
+ IF( SCALOC.NE.ONE ) THEN
+ DO 130 K = 1, N
+ CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
+ CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
+ 130 CONTINUE
+ SCALE = SCALE*SCALOC
+ END IF
+*
+* Unpack solution vector(s)
+*
+ C( IS, JS ) = RHS( 1 )
+ F( IS, JS ) = RHS( 2 )
+*
+* Substitute R(I, J) and L(I, J) into remaining
+* equation.
+*
+ IF( J.GT.P+2 ) THEN
+ ALPHA = RHS( 1 )
+ CALL DAXPY( JS-1, ALPHA, B( 1, JS ), 1, F( IS, 1 ),
+ $ LDF )
+ ALPHA = RHS( 2 )
+ CALL DAXPY( JS-1, ALPHA, E( 1, JS ), 1, F( IS, 1 ),
+ $ LDF )
+ END IF
+ IF( I.LT.P ) THEN
+ ALPHA = -RHS( 1 )
+ CALL DAXPY( M-IE, ALPHA, A( IS, IE+1 ), LDA,
+ $ C( IE+1, JS ), 1 )
+ ALPHA = -RHS( 2 )
+ CALL DAXPY( M-IE, ALPHA, D( IS, IE+1 ), LDD,
+ $ C( IE+1, JS ), 1 )
+ END IF
+*
+ ELSE IF( ( MB.EQ.1 ) .AND. ( NB.EQ.2 ) ) THEN
+*
+* Build a 4-by-4 system Z' * x = RHS
+*
+ Z( 1, 1 ) = A( IS, IS )
+ Z( 2, 1 ) = ZERO
+ Z( 3, 1 ) = -B( JS, JS )
+ Z( 4, 1 ) = -B( JSP1, JS )
+*
+ Z( 1, 2 ) = ZERO
+ Z( 2, 2 ) = A( IS, IS )
+ Z( 3, 2 ) = -B( JS, JSP1 )
+ Z( 4, 2 ) = -B( JSP1, JSP1 )
+*
+ Z( 1, 3 ) = D( IS, IS )
+ Z( 2, 3 ) = ZERO
+ Z( 3, 3 ) = -E( JS, JS )
+ Z( 4, 3 ) = ZERO
+*
+ Z( 1, 4 ) = ZERO
+ Z( 2, 4 ) = D( IS, IS )
+ Z( 3, 4 ) = -E( JS, JSP1 )
+ Z( 4, 4 ) = -E( JSP1, JSP1 )
+*
+* Set up right hand side(s)
+*
+ RHS( 1 ) = C( IS, JS )
+ RHS( 2 ) = C( IS, JSP1 )
+ RHS( 3 ) = F( IS, JS )
+ RHS( 4 ) = F( IS, JSP1 )
+*
+* Solve Z' * x = RHS
+*
+ CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
+ IF( IERR.GT.0 )
+ $ INFO = IERR
+ CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
+ IF( SCALOC.NE.ONE ) THEN
+ DO 140 K = 1, N
+ CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
+ CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
+ 140 CONTINUE
+ SCALE = SCALE*SCALOC
+ END IF
+*
+* Unpack solution vector(s)
+*
+ C( IS, JS ) = RHS( 1 )
+ C( IS, JSP1 ) = RHS( 2 )
+ F( IS, JS ) = RHS( 3 )
+ F( IS, JSP1 ) = RHS( 4 )
+*
+* Substitute R(I, J) and L(I, J) into remaining
+* equation.
+*
+ IF( J.GT.P+2 ) THEN
+ CALL DAXPY( JS-1, RHS( 1 ), B( 1, JS ), 1,
+ $ F( IS, 1 ), LDF )
+ CALL DAXPY( JS-1, RHS( 2 ), B( 1, JSP1 ), 1,
+ $ F( IS, 1 ), LDF )
+ CALL DAXPY( JS-1, RHS( 3 ), E( 1, JS ), 1,
+ $ F( IS, 1 ), LDF )
+ CALL DAXPY( JS-1, RHS( 4 ), E( 1, JSP1 ), 1,
+ $ F( IS, 1 ), LDF )
+ END IF
+ IF( I.LT.P ) THEN
+ CALL DGER( M-IE, NB, -ONE, A( IS, IE+1 ), LDA,
+ $ RHS( 1 ), 1, C( IE+1, JS ), LDC )
+ CALL DGER( M-IE, NB, -ONE, D( IS, IE+1 ), LDD,
+ $ RHS( 3 ), 1, C( IE+1, JS ), LDC )
+ END IF
+*
+ ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.1 ) ) THEN
+*
+* Build a 4-by-4 system Z' * x = RHS
+*
+ Z( 1, 1 ) = A( IS, IS )
+ Z( 2, 1 ) = A( IS, ISP1 )
+ Z( 3, 1 ) = -B( JS, JS )
+ Z( 4, 1 ) = ZERO
+*
+ Z( 1, 2 ) = A( ISP1, IS )
+ Z( 2, 2 ) = A( ISP1, ISP1 )
+ Z( 3, 2 ) = ZERO
+ Z( 4, 2 ) = -B( JS, JS )
+*
+ Z( 1, 3 ) = D( IS, IS )
+ Z( 2, 3 ) = D( IS, ISP1 )
+ Z( 3, 3 ) = -E( JS, JS )
+ Z( 4, 3 ) = ZERO
+*
+ Z( 1, 4 ) = ZERO
+ Z( 2, 4 ) = D( ISP1, ISP1 )
+ Z( 3, 4 ) = ZERO
+ Z( 4, 4 ) = -E( JS, JS )
+*
+* Set up right hand side(s)
+*
+ RHS( 1 ) = C( IS, JS )
+ RHS( 2 ) = C( ISP1, JS )
+ RHS( 3 ) = F( IS, JS )
+ RHS( 4 ) = F( ISP1, JS )
+*
+* Solve Z' * x = RHS
+*
+ CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
+ IF( IERR.GT.0 )
+ $ INFO = IERR
+*
+ CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
+ IF( SCALOC.NE.ONE ) THEN
+ DO 150 K = 1, N
+ CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
+ CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
+ 150 CONTINUE
+ SCALE = SCALE*SCALOC
+ END IF
+*
+* Unpack solution vector(s)
+*
+ C( IS, JS ) = RHS( 1 )
+ C( ISP1, JS ) = RHS( 2 )
+ F( IS, JS ) = RHS( 3 )
+ F( ISP1, JS ) = RHS( 4 )
+*
+* Substitute R(I, J) and L(I, J) into remaining
+* equation.
+*
+ IF( J.GT.P+2 ) THEN
+ CALL DGER( MB, JS-1, ONE, RHS( 1 ), 1, B( 1, JS ),
+ $ 1, F( IS, 1 ), LDF )
+ CALL DGER( MB, JS-1, ONE, RHS( 3 ), 1, E( 1, JS ),
+ $ 1, F( IS, 1 ), LDF )
+ END IF
+ IF( I.LT.P ) THEN
+ CALL DGEMV( 'T', MB, M-IE, -ONE, A( IS, IE+1 ),
+ $ LDA, RHS( 1 ), 1, ONE, C( IE+1, JS ),
+ $ 1 )
+ CALL DGEMV( 'T', MB, M-IE, -ONE, D( IS, IE+1 ),
+ $ LDD, RHS( 3 ), 1, ONE, C( IE+1, JS ),
+ $ 1 )
+ END IF
+*
+ ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.2 ) ) THEN
+*
+* Build an 8-by-8 system Z' * x = RHS
+*
+ CALL DLASET( 'F', LDZ, LDZ, ZERO, ZERO, Z, LDZ )
+*
+ Z( 1, 1 ) = A( IS, IS )
+ Z( 2, 1 ) = A( IS, ISP1 )
+ Z( 5, 1 ) = -B( JS, JS )
+ Z( 7, 1 ) = -B( JSP1, JS )
+*
+ Z( 1, 2 ) = A( ISP1, IS )
+ Z( 2, 2 ) = A( ISP1, ISP1 )
+ Z( 6, 2 ) = -B( JS, JS )
+ Z( 8, 2 ) = -B( JSP1, JS )
+*
+ Z( 3, 3 ) = A( IS, IS )
+ Z( 4, 3 ) = A( IS, ISP1 )
+ Z( 5, 3 ) = -B( JS, JSP1 )
+ Z( 7, 3 ) = -B( JSP1, JSP1 )
+*
+ Z( 3, 4 ) = A( ISP1, IS )
+ Z( 4, 4 ) = A( ISP1, ISP1 )
+ Z( 6, 4 ) = -B( JS, JSP1 )
+ Z( 8, 4 ) = -B( JSP1, JSP1 )
+*
+ Z( 1, 5 ) = D( IS, IS )
+ Z( 2, 5 ) = D( IS, ISP1 )
+ Z( 5, 5 ) = -E( JS, JS )
+*
+ Z( 2, 6 ) = D( ISP1, ISP1 )
+ Z( 6, 6 ) = -E( JS, JS )
+*
+ Z( 3, 7 ) = D( IS, IS )
+ Z( 4, 7 ) = D( IS, ISP1 )
+ Z( 5, 7 ) = -E( JS, JSP1 )
+ Z( 7, 7 ) = -E( JSP1, JSP1 )
+*
+ Z( 4, 8 ) = D( ISP1, ISP1 )
+ Z( 6, 8 ) = -E( JS, JSP1 )
+ Z( 8, 8 ) = -E( JSP1, JSP1 )
+*
+* Set up right hand side(s)
+*
+ K = 1
+ II = MB*NB + 1
+ DO 160 JJ = 0, NB - 1
+ CALL DCOPY( MB, C( IS, JS+JJ ), 1, RHS( K ), 1 )
+ CALL DCOPY( MB, F( IS, JS+JJ ), 1, RHS( II ), 1 )
+ K = K + MB
+ II = II + MB
+ 160 CONTINUE
+*
+*
+* Solve Z' * x = RHS
+*
+ CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
+ IF( IERR.GT.0 )
+ $ INFO = IERR
+*
+ CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
+ IF( SCALOC.NE.ONE ) THEN
+ DO 170 K = 1, N
+ CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
+ CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
+ 170 CONTINUE
+ SCALE = SCALE*SCALOC
+ END IF
+*
+* Unpack solution vector(s)
+*
+ K = 1
+ II = MB*NB + 1
+ DO 180 JJ = 0, NB - 1
+ CALL DCOPY( MB, RHS( K ), 1, C( IS, JS+JJ ), 1 )
+ CALL DCOPY( MB, RHS( II ), 1, F( IS, JS+JJ ), 1 )
+ K = K + MB
+ II = II + MB
+ 180 CONTINUE
+*
+* Substitute R(I, J) and L(I, J) into remaining
+* equation.
+*
+ IF( J.GT.P+2 ) THEN
+ CALL DGEMM( 'N', 'T', MB, JS-1, NB, ONE,
+ $ C( IS, JS ), LDC, B( 1, JS ), LDB, ONE,
+ $ F( IS, 1 ), LDF )
+ CALL DGEMM( 'N', 'T', MB, JS-1, NB, ONE,
+ $ F( IS, JS ), LDF, E( 1, JS ), LDE, ONE,
+ $ F( IS, 1 ), LDF )
+ END IF
+ IF( I.LT.P ) THEN
+ CALL DGEMM( 'T', 'N', M-IE, NB, MB, -ONE,
+ $ A( IS, IE+1 ), LDA, C( IS, JS ), LDC,
+ $ ONE, C( IE+1, JS ), LDC )
+ CALL DGEMM( 'T', 'N', M-IE, NB, MB, -ONE,
+ $ D( IS, IE+1 ), LDD, F( IS, JS ), LDF,
+ $ ONE, C( IE+1, JS ), LDC )
+ END IF
+*
+ END IF
+*
+ 190 CONTINUE
+ 200 CONTINUE
+*
+ END IF
+ RETURN
+*
+* End of DTGSY2
+*
+ END