summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dtgexc.f
diff options
context:
space:
mode:
authoryash11122017-07-07 21:20:49 +0530
committeryash11122017-07-07 21:20:49 +0530
commit9e5793a7b05b23e6044a6d7a9ddd5db39ba375f0 (patch)
treef50d6e06d8fe6bc1a9053ef10d4b4d857800ab51 /2.3-1/src/fortran/lapack/dtgexc.f
downloadScilab2C-9e5793a7b05b23e6044a6d7a9ddd5db39ba375f0.tar.gz
Scilab2C-9e5793a7b05b23e6044a6d7a9ddd5db39ba375f0.tar.bz2
Scilab2C-9e5793a7b05b23e6044a6d7a9ddd5db39ba375f0.zip
sci2c arduino updated
Diffstat (limited to '2.3-1/src/fortran/lapack/dtgexc.f')
-rw-r--r--2.3-1/src/fortran/lapack/dtgexc.f440
1 files changed, 440 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dtgexc.f b/2.3-1/src/fortran/lapack/dtgexc.f
new file mode 100644
index 00000000..bafefea2
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dtgexc.f
@@ -0,0 +1,440 @@
+ SUBROUTINE DTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
+ $ LDZ, IFST, ILST, WORK, LWORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ LOGICAL WANTQ, WANTZ
+ INTEGER IFST, ILST, INFO, LDA, LDB, LDQ, LDZ, LWORK, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
+ $ WORK( * ), Z( LDZ, * )
+* ..
+*
+* Purpose
+* =======
+*
+* DTGEXC reorders the generalized real Schur decomposition of a real
+* matrix pair (A,B) using an orthogonal equivalence transformation
+*
+* (A, B) = Q * (A, B) * Z',
+*
+* so that the diagonal block of (A, B) with row index IFST is moved
+* to row ILST.
+*
+* (A, B) must be in generalized real Schur canonical form (as returned
+* by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
+* diagonal blocks. B is upper triangular.
+*
+* Optionally, the matrices Q and Z of generalized Schur vectors are
+* updated.
+*
+* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
+* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
+*
+*
+* Arguments
+* =========
+*
+* WANTQ (input) LOGICAL
+* .TRUE. : update the left transformation matrix Q;
+* .FALSE.: do not update Q.
+*
+* WANTZ (input) LOGICAL
+* .TRUE. : update the right transformation matrix Z;
+* .FALSE.: do not update Z.
+*
+* N (input) INTEGER
+* The order of the matrices A and B. N >= 0.
+*
+* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+* On entry, the matrix A in generalized real Schur canonical
+* form.
+* On exit, the updated matrix A, again in generalized
+* real Schur canonical form.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
+* On entry, the matrix B in generalized real Schur canonical
+* form (A,B).
+* On exit, the updated matrix B, again in generalized
+* real Schur canonical form (A,B).
+*
+* LDB (input) INTEGER
+* The leading dimension of the array B. LDB >= max(1,N).
+*
+* Q (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
+* On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
+* On exit, the updated matrix Q.
+* If WANTQ = .FALSE., Q is not referenced.
+*
+* LDQ (input) INTEGER
+* The leading dimension of the array Q. LDQ >= 1.
+* If WANTQ = .TRUE., LDQ >= N.
+*
+* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
+* On entry, if WANTZ = .TRUE., the orthogonal matrix Z.
+* On exit, the updated matrix Z.
+* If WANTZ = .FALSE., Z is not referenced.
+*
+* LDZ (input) INTEGER
+* The leading dimension of the array Z. LDZ >= 1.
+* If WANTZ = .TRUE., LDZ >= N.
+*
+* IFST (input/output) INTEGER
+* ILST (input/output) INTEGER
+* Specify the reordering of the diagonal blocks of (A, B).
+* The block with row index IFST is moved to row ILST, by a
+* sequence of swapping between adjacent blocks.
+* On exit, if IFST pointed on entry to the second row of
+* a 2-by-2 block, it is changed to point to the first row;
+* ILST always points to the first row of the block in its
+* final position (which may differ from its input value by
+* +1 or -1). 1 <= IFST, ILST <= N.
+*
+* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK.
+* LWORK >= 1 when N <= 1, otherwise LWORK >= 4*N + 16.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* =0: successful exit.
+* <0: if INFO = -i, the i-th argument had an illegal value.
+* =1: The transformed matrix pair (A, B) would be too far
+* from generalized Schur form; the problem is ill-
+* conditioned. (A, B) may have been partially reordered,
+* and ILST points to the first row of the current
+* position of the block being moved.
+*
+* Further Details
+* ===============
+*
+* Based on contributions by
+* Bo Kagstrom and Peter Poromaa, Department of Computing Science,
+* Umea University, S-901 87 Umea, Sweden.
+*
+* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
+* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
+* M.S. Moonen et al (eds), Linear Algebra for Large Scale and
+* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO
+ PARAMETER ( ZERO = 0.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY
+ INTEGER HERE, LWMIN, NBF, NBL, NBNEXT
+* ..
+* .. External Subroutines ..
+ EXTERNAL DTGEX2, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX
+* ..
+* .. Executable Statements ..
+*
+* Decode and test input arguments.
+*
+ INFO = 0
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -5
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -7
+ ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. ( LDQ.LT.MAX( 1, N ) ) ) THEN
+ INFO = -9
+ ELSE IF( LDZ.LT.1 .OR. WANTZ .AND. ( LDZ.LT.MAX( 1, N ) ) ) THEN
+ INFO = -11
+ ELSE IF( IFST.LT.1 .OR. IFST.GT.N ) THEN
+ INFO = -12
+ ELSE IF( ILST.LT.1 .OR. ILST.GT.N ) THEN
+ INFO = -13
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+ IF( N.LE.1 ) THEN
+ LWMIN = 1
+ ELSE
+ LWMIN = 4*N + 16
+ END IF
+ WORK(1) = LWMIN
+*
+ IF (LWORK.LT.LWMIN .AND. .NOT.LQUERY) THEN
+ INFO = -15
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DTGEXC', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.LE.1 )
+ $ RETURN
+*
+* Determine the first row of the specified block and find out
+* if it is 1-by-1 or 2-by-2.
+*
+ IF( IFST.GT.1 ) THEN
+ IF( A( IFST, IFST-1 ).NE.ZERO )
+ $ IFST = IFST - 1
+ END IF
+ NBF = 1
+ IF( IFST.LT.N ) THEN
+ IF( A( IFST+1, IFST ).NE.ZERO )
+ $ NBF = 2
+ END IF
+*
+* Determine the first row of the final block
+* and find out if it is 1-by-1 or 2-by-2.
+*
+ IF( ILST.GT.1 ) THEN
+ IF( A( ILST, ILST-1 ).NE.ZERO )
+ $ ILST = ILST - 1
+ END IF
+ NBL = 1
+ IF( ILST.LT.N ) THEN
+ IF( A( ILST+1, ILST ).NE.ZERO )
+ $ NBL = 2
+ END IF
+ IF( IFST.EQ.ILST )
+ $ RETURN
+*
+ IF( IFST.LT.ILST ) THEN
+*
+* Update ILST.
+*
+ IF( NBF.EQ.2 .AND. NBL.EQ.1 )
+ $ ILST = ILST - 1
+ IF( NBF.EQ.1 .AND. NBL.EQ.2 )
+ $ ILST = ILST + 1
+*
+ HERE = IFST
+*
+ 10 CONTINUE
+*
+* Swap with next one below.
+*
+ IF( NBF.EQ.1 .OR. NBF.EQ.2 ) THEN
+*
+* Current block either 1-by-1 or 2-by-2.
+*
+ NBNEXT = 1
+ IF( HERE+NBF+1.LE.N ) THEN
+ IF( A( HERE+NBF+1, HERE+NBF ).NE.ZERO )
+ $ NBNEXT = 2
+ END IF
+ CALL DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
+ $ LDZ, HERE, NBF, NBNEXT, WORK, LWORK, INFO )
+ IF( INFO.NE.0 ) THEN
+ ILST = HERE
+ RETURN
+ END IF
+ HERE = HERE + NBNEXT
+*
+* Test if 2-by-2 block breaks into two 1-by-1 blocks.
+*
+ IF( NBF.EQ.2 ) THEN
+ IF( A( HERE+1, HERE ).EQ.ZERO )
+ $ NBF = 3
+ END IF
+*
+ ELSE
+*
+* Current block consists of two 1-by-1 blocks, each of which
+* must be swapped individually.
+*
+ NBNEXT = 1
+ IF( HERE+3.LE.N ) THEN
+ IF( A( HERE+3, HERE+2 ).NE.ZERO )
+ $ NBNEXT = 2
+ END IF
+ CALL DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
+ $ LDZ, HERE+1, 1, NBNEXT, WORK, LWORK, INFO )
+ IF( INFO.NE.0 ) THEN
+ ILST = HERE
+ RETURN
+ END IF
+ IF( NBNEXT.EQ.1 ) THEN
+*
+* Swap two 1-by-1 blocks.
+*
+ CALL DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
+ $ LDZ, HERE, 1, 1, WORK, LWORK, INFO )
+ IF( INFO.NE.0 ) THEN
+ ILST = HERE
+ RETURN
+ END IF
+ HERE = HERE + 1
+*
+ ELSE
+*
+* Recompute NBNEXT in case of 2-by-2 split.
+*
+ IF( A( HERE+2, HERE+1 ).EQ.ZERO )
+ $ NBNEXT = 1
+ IF( NBNEXT.EQ.2 ) THEN
+*
+* 2-by-2 block did not split.
+*
+ CALL DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ,
+ $ Z, LDZ, HERE, 1, NBNEXT, WORK, LWORK,
+ $ INFO )
+ IF( INFO.NE.0 ) THEN
+ ILST = HERE
+ RETURN
+ END IF
+ HERE = HERE + 2
+ ELSE
+*
+* 2-by-2 block did split.
+*
+ CALL DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ,
+ $ Z, LDZ, HERE, 1, 1, WORK, LWORK, INFO )
+ IF( INFO.NE.0 ) THEN
+ ILST = HERE
+ RETURN
+ END IF
+ HERE = HERE + 1
+ CALL DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ,
+ $ Z, LDZ, HERE, 1, 1, WORK, LWORK, INFO )
+ IF( INFO.NE.0 ) THEN
+ ILST = HERE
+ RETURN
+ END IF
+ HERE = HERE + 1
+ END IF
+*
+ END IF
+ END IF
+ IF( HERE.LT.ILST )
+ $ GO TO 10
+ ELSE
+ HERE = IFST
+*
+ 20 CONTINUE
+*
+* Swap with next one below.
+*
+ IF( NBF.EQ.1 .OR. NBF.EQ.2 ) THEN
+*
+* Current block either 1-by-1 or 2-by-2.
+*
+ NBNEXT = 1
+ IF( HERE.GE.3 ) THEN
+ IF( A( HERE-1, HERE-2 ).NE.ZERO )
+ $ NBNEXT = 2
+ END IF
+ CALL DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
+ $ LDZ, HERE-NBNEXT, NBNEXT, NBF, WORK, LWORK,
+ $ INFO )
+ IF( INFO.NE.0 ) THEN
+ ILST = HERE
+ RETURN
+ END IF
+ HERE = HERE - NBNEXT
+*
+* Test if 2-by-2 block breaks into two 1-by-1 blocks.
+*
+ IF( NBF.EQ.2 ) THEN
+ IF( A( HERE+1, HERE ).EQ.ZERO )
+ $ NBF = 3
+ END IF
+*
+ ELSE
+*
+* Current block consists of two 1-by-1 blocks, each of which
+* must be swapped individually.
+*
+ NBNEXT = 1
+ IF( HERE.GE.3 ) THEN
+ IF( A( HERE-1, HERE-2 ).NE.ZERO )
+ $ NBNEXT = 2
+ END IF
+ CALL DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
+ $ LDZ, HERE-NBNEXT, NBNEXT, 1, WORK, LWORK,
+ $ INFO )
+ IF( INFO.NE.0 ) THEN
+ ILST = HERE
+ RETURN
+ END IF
+ IF( NBNEXT.EQ.1 ) THEN
+*
+* Swap two 1-by-1 blocks.
+*
+ CALL DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
+ $ LDZ, HERE, NBNEXT, 1, WORK, LWORK, INFO )
+ IF( INFO.NE.0 ) THEN
+ ILST = HERE
+ RETURN
+ END IF
+ HERE = HERE - 1
+ ELSE
+*
+* Recompute NBNEXT in case of 2-by-2 split.
+*
+ IF( A( HERE, HERE-1 ).EQ.ZERO )
+ $ NBNEXT = 1
+ IF( NBNEXT.EQ.2 ) THEN
+*
+* 2-by-2 block did not split.
+*
+ CALL DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ,
+ $ Z, LDZ, HERE-1, 2, 1, WORK, LWORK, INFO )
+ IF( INFO.NE.0 ) THEN
+ ILST = HERE
+ RETURN
+ END IF
+ HERE = HERE - 2
+ ELSE
+*
+* 2-by-2 block did split.
+*
+ CALL DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ,
+ $ Z, LDZ, HERE, 1, 1, WORK, LWORK, INFO )
+ IF( INFO.NE.0 ) THEN
+ ILST = HERE
+ RETURN
+ END IF
+ HERE = HERE - 1
+ CALL DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ,
+ $ Z, LDZ, HERE, 1, 1, WORK, LWORK, INFO )
+ IF( INFO.NE.0 ) THEN
+ ILST = HERE
+ RETURN
+ END IF
+ HERE = HERE - 1
+ END IF
+ END IF
+ END IF
+ IF( HERE.GT.ILST )
+ $ GO TO 20
+ END IF
+ ILST = HERE
+ WORK( 1 ) = LWMIN
+ RETURN
+*
+* End of DTGEXC
+*
+ END