summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dtgevc.f
diff options
context:
space:
mode:
authorSiddhesh Wani2015-05-25 14:46:31 +0530
committerSiddhesh Wani2015-05-25 14:46:31 +0530
commit6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26 (patch)
tree1b7bd89fdcfd01715713d8a15db471dc75a96bbf /2.3-1/src/fortran/lapack/dtgevc.f
downloadScilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.gz
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.bz2
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.zip
Original Version
Diffstat (limited to '2.3-1/src/fortran/lapack/dtgevc.f')
-rw-r--r--2.3-1/src/fortran/lapack/dtgevc.f1147
1 files changed, 1147 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dtgevc.f b/2.3-1/src/fortran/lapack/dtgevc.f
new file mode 100644
index 00000000..091c3f65
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dtgevc.f
@@ -0,0 +1,1147 @@
+ SUBROUTINE DTGEVC( SIDE, HOWMNY, SELECT, N, S, LDS, P, LDP, VL,
+ $ LDVL, VR, LDVR, MM, M, WORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER HOWMNY, SIDE
+ INTEGER INFO, LDP, LDS, LDVL, LDVR, M, MM, N
+* ..
+* .. Array Arguments ..
+ LOGICAL SELECT( * )
+ DOUBLE PRECISION P( LDP, * ), S( LDS, * ), VL( LDVL, * ),
+ $ VR( LDVR, * ), WORK( * )
+* ..
+*
+*
+* Purpose
+* =======
+*
+* DTGEVC computes some or all of the right and/or left eigenvectors of
+* a pair of real matrices (S,P), where S is a quasi-triangular matrix
+* and P is upper triangular. Matrix pairs of this type are produced by
+* the generalized Schur factorization of a matrix pair (A,B):
+*
+* A = Q*S*Z**T, B = Q*P*Z**T
+*
+* as computed by DGGHRD + DHGEQZ.
+*
+* The right eigenvector x and the left eigenvector y of (S,P)
+* corresponding to an eigenvalue w are defined by:
+*
+* S*x = w*P*x, (y**H)*S = w*(y**H)*P,
+*
+* where y**H denotes the conjugate tranpose of y.
+* The eigenvalues are not input to this routine, but are computed
+* directly from the diagonal blocks of S and P.
+*
+* This routine returns the matrices X and/or Y of right and left
+* eigenvectors of (S,P), or the products Z*X and/or Q*Y,
+* where Z and Q are input matrices.
+* If Q and Z are the orthogonal factors from the generalized Schur
+* factorization of a matrix pair (A,B), then Z*X and Q*Y
+* are the matrices of right and left eigenvectors of (A,B).
+*
+* Arguments
+* =========
+*
+* SIDE (input) CHARACTER*1
+* = 'R': compute right eigenvectors only;
+* = 'L': compute left eigenvectors only;
+* = 'B': compute both right and left eigenvectors.
+*
+* HOWMNY (input) CHARACTER*1
+* = 'A': compute all right and/or left eigenvectors;
+* = 'B': compute all right and/or left eigenvectors,
+* backtransformed by the matrices in VR and/or VL;
+* = 'S': compute selected right and/or left eigenvectors,
+* specified by the logical array SELECT.
+*
+* SELECT (input) LOGICAL array, dimension (N)
+* If HOWMNY='S', SELECT specifies the eigenvectors to be
+* computed. If w(j) is a real eigenvalue, the corresponding
+* real eigenvector is computed if SELECT(j) is .TRUE..
+* If w(j) and w(j+1) are the real and imaginary parts of a
+* complex eigenvalue, the corresponding complex eigenvector
+* is computed if either SELECT(j) or SELECT(j+1) is .TRUE.,
+* and on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is
+* set to .FALSE..
+* Not referenced if HOWMNY = 'A' or 'B'.
+*
+* N (input) INTEGER
+* The order of the matrices S and P. N >= 0.
+*
+* S (input) DOUBLE PRECISION array, dimension (LDS,N)
+* The upper quasi-triangular matrix S from a generalized Schur
+* factorization, as computed by DHGEQZ.
+*
+* LDS (input) INTEGER
+* The leading dimension of array S. LDS >= max(1,N).
+*
+* P (input) DOUBLE PRECISION array, dimension (LDP,N)
+* The upper triangular matrix P from a generalized Schur
+* factorization, as computed by DHGEQZ.
+* 2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks
+* of S must be in positive diagonal form.
+*
+* LDP (input) INTEGER
+* The leading dimension of array P. LDP >= max(1,N).
+*
+* VL (input/output) DOUBLE PRECISION array, dimension (LDVL,MM)
+* On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
+* contain an N-by-N matrix Q (usually the orthogonal matrix Q
+* of left Schur vectors returned by DHGEQZ).
+* On exit, if SIDE = 'L' or 'B', VL contains:
+* if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P);
+* if HOWMNY = 'B', the matrix Q*Y;
+* if HOWMNY = 'S', the left eigenvectors of (S,P) specified by
+* SELECT, stored consecutively in the columns of
+* VL, in the same order as their eigenvalues.
+*
+* A complex eigenvector corresponding to a complex eigenvalue
+* is stored in two consecutive columns, the first holding the
+* real part, and the second the imaginary part.
+*
+* Not referenced if SIDE = 'R'.
+*
+* LDVL (input) INTEGER
+* The leading dimension of array VL. LDVL >= 1, and if
+* SIDE = 'L' or 'B', LDVL >= N.
+*
+* VR (input/output) DOUBLE PRECISION array, dimension (LDVR,MM)
+* On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
+* contain an N-by-N matrix Z (usually the orthogonal matrix Z
+* of right Schur vectors returned by DHGEQZ).
+*
+* On exit, if SIDE = 'R' or 'B', VR contains:
+* if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P);
+* if HOWMNY = 'B' or 'b', the matrix Z*X;
+* if HOWMNY = 'S' or 's', the right eigenvectors of (S,P)
+* specified by SELECT, stored consecutively in the
+* columns of VR, in the same order as their
+* eigenvalues.
+*
+* A complex eigenvector corresponding to a complex eigenvalue
+* is stored in two consecutive columns, the first holding the
+* real part and the second the imaginary part.
+*
+* Not referenced if SIDE = 'L'.
+*
+* LDVR (input) INTEGER
+* The leading dimension of the array VR. LDVR >= 1, and if
+* SIDE = 'R' or 'B', LDVR >= N.
+*
+* MM (input) INTEGER
+* The number of columns in the arrays VL and/or VR. MM >= M.
+*
+* M (output) INTEGER
+* The number of columns in the arrays VL and/or VR actually
+* used to store the eigenvectors. If HOWMNY = 'A' or 'B', M
+* is set to N. Each selected real eigenvector occupies one
+* column and each selected complex eigenvector occupies two
+* columns.
+*
+* WORK (workspace) DOUBLE PRECISION array, dimension (6*N)
+*
+* INFO (output) INTEGER
+* = 0: successful exit.
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+* > 0: the 2-by-2 block (INFO:INFO+1) does not have a complex
+* eigenvalue.
+*
+* Further Details
+* ===============
+*
+* Allocation of workspace:
+* ---------- -- ---------
+*
+* WORK( j ) = 1-norm of j-th column of A, above the diagonal
+* WORK( N+j ) = 1-norm of j-th column of B, above the diagonal
+* WORK( 2*N+1:3*N ) = real part of eigenvector
+* WORK( 3*N+1:4*N ) = imaginary part of eigenvector
+* WORK( 4*N+1:5*N ) = real part of back-transformed eigenvector
+* WORK( 5*N+1:6*N ) = imaginary part of back-transformed eigenvector
+*
+* Rowwise vs. columnwise solution methods:
+* ------- -- ---------- -------- -------
+*
+* Finding a generalized eigenvector consists basically of solving the
+* singular triangular system
+*
+* (A - w B) x = 0 (for right) or: (A - w B)**H y = 0 (for left)
+*
+* Consider finding the i-th right eigenvector (assume all eigenvalues
+* are real). The equation to be solved is:
+* n i
+* 0 = sum C(j,k) v(k) = sum C(j,k) v(k) for j = i,. . .,1
+* k=j k=j
+*
+* where C = (A - w B) (The components v(i+1:n) are 0.)
+*
+* The "rowwise" method is:
+*
+* (1) v(i) := 1
+* for j = i-1,. . .,1:
+* i
+* (2) compute s = - sum C(j,k) v(k) and
+* k=j+1
+*
+* (3) v(j) := s / C(j,j)
+*
+* Step 2 is sometimes called the "dot product" step, since it is an
+* inner product between the j-th row and the portion of the eigenvector
+* that has been computed so far.
+*
+* The "columnwise" method consists basically in doing the sums
+* for all the rows in parallel. As each v(j) is computed, the
+* contribution of v(j) times the j-th column of C is added to the
+* partial sums. Since FORTRAN arrays are stored columnwise, this has
+* the advantage that at each step, the elements of C that are accessed
+* are adjacent to one another, whereas with the rowwise method, the
+* elements accessed at a step are spaced LDS (and LDP) words apart.
+*
+* When finding left eigenvectors, the matrix in question is the
+* transpose of the one in storage, so the rowwise method then
+* actually accesses columns of A and B at each step, and so is the
+* preferred method.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE, SAFETY
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0,
+ $ SAFETY = 1.0D+2 )
+* ..
+* .. Local Scalars ..
+ LOGICAL COMPL, COMPR, IL2BY2, ILABAD, ILALL, ILBACK,
+ $ ILBBAD, ILCOMP, ILCPLX, LSA, LSB
+ INTEGER I, IBEG, IEIG, IEND, IHWMNY, IINFO, IM, ISIDE,
+ $ J, JA, JC, JE, JR, JW, NA, NW
+ DOUBLE PRECISION ACOEF, ACOEFA, ANORM, ASCALE, BCOEFA, BCOEFI,
+ $ BCOEFR, BIG, BIGNUM, BNORM, BSCALE, CIM2A,
+ $ CIM2B, CIMAGA, CIMAGB, CRE2A, CRE2B, CREALA,
+ $ CREALB, DMIN, SAFMIN, SALFAR, SBETA, SCALE,
+ $ SMALL, TEMP, TEMP2, TEMP2I, TEMP2R, ULP, XMAX,
+ $ XSCALE
+* ..
+* .. Local Arrays ..
+ DOUBLE PRECISION BDIAG( 2 ), SUM( 2, 2 ), SUMS( 2, 2 ),
+ $ SUMP( 2, 2 )
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ DOUBLE PRECISION DLAMCH
+ EXTERNAL LSAME, DLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL DGEMV, DLABAD, DLACPY, DLAG2, DLALN2, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Decode and Test the input parameters
+*
+ IF( LSAME( HOWMNY, 'A' ) ) THEN
+ IHWMNY = 1
+ ILALL = .TRUE.
+ ILBACK = .FALSE.
+ ELSE IF( LSAME( HOWMNY, 'S' ) ) THEN
+ IHWMNY = 2
+ ILALL = .FALSE.
+ ILBACK = .FALSE.
+ ELSE IF( LSAME( HOWMNY, 'B' ) ) THEN
+ IHWMNY = 3
+ ILALL = .TRUE.
+ ILBACK = .TRUE.
+ ELSE
+ IHWMNY = -1
+ ILALL = .TRUE.
+ END IF
+*
+ IF( LSAME( SIDE, 'R' ) ) THEN
+ ISIDE = 1
+ COMPL = .FALSE.
+ COMPR = .TRUE.
+ ELSE IF( LSAME( SIDE, 'L' ) ) THEN
+ ISIDE = 2
+ COMPL = .TRUE.
+ COMPR = .FALSE.
+ ELSE IF( LSAME( SIDE, 'B' ) ) THEN
+ ISIDE = 3
+ COMPL = .TRUE.
+ COMPR = .TRUE.
+ ELSE
+ ISIDE = -1
+ END IF
+*
+ INFO = 0
+ IF( ISIDE.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( IHWMNY.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDS.LT.MAX( 1, N ) ) THEN
+ INFO = -6
+ ELSE IF( LDP.LT.MAX( 1, N ) ) THEN
+ INFO = -8
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DTGEVC', -INFO )
+ RETURN
+ END IF
+*
+* Count the number of eigenvectors to be computed
+*
+ IF( .NOT.ILALL ) THEN
+ IM = 0
+ ILCPLX = .FALSE.
+ DO 10 J = 1, N
+ IF( ILCPLX ) THEN
+ ILCPLX = .FALSE.
+ GO TO 10
+ END IF
+ IF( J.LT.N ) THEN
+ IF( S( J+1, J ).NE.ZERO )
+ $ ILCPLX = .TRUE.
+ END IF
+ IF( ILCPLX ) THEN
+ IF( SELECT( J ) .OR. SELECT( J+1 ) )
+ $ IM = IM + 2
+ ELSE
+ IF( SELECT( J ) )
+ $ IM = IM + 1
+ END IF
+ 10 CONTINUE
+ ELSE
+ IM = N
+ END IF
+*
+* Check 2-by-2 diagonal blocks of A, B
+*
+ ILABAD = .FALSE.
+ ILBBAD = .FALSE.
+ DO 20 J = 1, N - 1
+ IF( S( J+1, J ).NE.ZERO ) THEN
+ IF( P( J, J ).EQ.ZERO .OR. P( J+1, J+1 ).EQ.ZERO .OR.
+ $ P( J, J+1 ).NE.ZERO )ILBBAD = .TRUE.
+ IF( J.LT.N-1 ) THEN
+ IF( S( J+2, J+1 ).NE.ZERO )
+ $ ILABAD = .TRUE.
+ END IF
+ END IF
+ 20 CONTINUE
+*
+ IF( ILABAD ) THEN
+ INFO = -5
+ ELSE IF( ILBBAD ) THEN
+ INFO = -7
+ ELSE IF( COMPL .AND. LDVL.LT.N .OR. LDVL.LT.1 ) THEN
+ INFO = -10
+ ELSE IF( COMPR .AND. LDVR.LT.N .OR. LDVR.LT.1 ) THEN
+ INFO = -12
+ ELSE IF( MM.LT.IM ) THEN
+ INFO = -13
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DTGEVC', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ M = IM
+ IF( N.EQ.0 )
+ $ RETURN
+*
+* Machine Constants
+*
+ SAFMIN = DLAMCH( 'Safe minimum' )
+ BIG = ONE / SAFMIN
+ CALL DLABAD( SAFMIN, BIG )
+ ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
+ SMALL = SAFMIN*N / ULP
+ BIG = ONE / SMALL
+ BIGNUM = ONE / ( SAFMIN*N )
+*
+* Compute the 1-norm of each column of the strictly upper triangular
+* part (i.e., excluding all elements belonging to the diagonal
+* blocks) of A and B to check for possible overflow in the
+* triangular solver.
+*
+ ANORM = ABS( S( 1, 1 ) )
+ IF( N.GT.1 )
+ $ ANORM = ANORM + ABS( S( 2, 1 ) )
+ BNORM = ABS( P( 1, 1 ) )
+ WORK( 1 ) = ZERO
+ WORK( N+1 ) = ZERO
+*
+ DO 50 J = 2, N
+ TEMP = ZERO
+ TEMP2 = ZERO
+ IF( S( J, J-1 ).EQ.ZERO ) THEN
+ IEND = J - 1
+ ELSE
+ IEND = J - 2
+ END IF
+ DO 30 I = 1, IEND
+ TEMP = TEMP + ABS( S( I, J ) )
+ TEMP2 = TEMP2 + ABS( P( I, J ) )
+ 30 CONTINUE
+ WORK( J ) = TEMP
+ WORK( N+J ) = TEMP2
+ DO 40 I = IEND + 1, MIN( J+1, N )
+ TEMP = TEMP + ABS( S( I, J ) )
+ TEMP2 = TEMP2 + ABS( P( I, J ) )
+ 40 CONTINUE
+ ANORM = MAX( ANORM, TEMP )
+ BNORM = MAX( BNORM, TEMP2 )
+ 50 CONTINUE
+*
+ ASCALE = ONE / MAX( ANORM, SAFMIN )
+ BSCALE = ONE / MAX( BNORM, SAFMIN )
+*
+* Left eigenvectors
+*
+ IF( COMPL ) THEN
+ IEIG = 0
+*
+* Main loop over eigenvalues
+*
+ ILCPLX = .FALSE.
+ DO 220 JE = 1, N
+*
+* Skip this iteration if (a) HOWMNY='S' and SELECT=.FALSE., or
+* (b) this would be the second of a complex pair.
+* Check for complex eigenvalue, so as to be sure of which
+* entry(-ies) of SELECT to look at.
+*
+ IF( ILCPLX ) THEN
+ ILCPLX = .FALSE.
+ GO TO 220
+ END IF
+ NW = 1
+ IF( JE.LT.N ) THEN
+ IF( S( JE+1, JE ).NE.ZERO ) THEN
+ ILCPLX = .TRUE.
+ NW = 2
+ END IF
+ END IF
+ IF( ILALL ) THEN
+ ILCOMP = .TRUE.
+ ELSE IF( ILCPLX ) THEN
+ ILCOMP = SELECT( JE ) .OR. SELECT( JE+1 )
+ ELSE
+ ILCOMP = SELECT( JE )
+ END IF
+ IF( .NOT.ILCOMP )
+ $ GO TO 220
+*
+* Decide if (a) singular pencil, (b) real eigenvalue, or
+* (c) complex eigenvalue.
+*
+ IF( .NOT.ILCPLX ) THEN
+ IF( ABS( S( JE, JE ) ).LE.SAFMIN .AND.
+ $ ABS( P( JE, JE ) ).LE.SAFMIN ) THEN
+*
+* Singular matrix pencil -- return unit eigenvector
+*
+ IEIG = IEIG + 1
+ DO 60 JR = 1, N
+ VL( JR, IEIG ) = ZERO
+ 60 CONTINUE
+ VL( IEIG, IEIG ) = ONE
+ GO TO 220
+ END IF
+ END IF
+*
+* Clear vector
+*
+ DO 70 JR = 1, NW*N
+ WORK( 2*N+JR ) = ZERO
+ 70 CONTINUE
+* T
+* Compute coefficients in ( a A - b B ) y = 0
+* a is ACOEF
+* b is BCOEFR + i*BCOEFI
+*
+ IF( .NOT.ILCPLX ) THEN
+*
+* Real eigenvalue
+*
+ TEMP = ONE / MAX( ABS( S( JE, JE ) )*ASCALE,
+ $ ABS( P( JE, JE ) )*BSCALE, SAFMIN )
+ SALFAR = ( TEMP*S( JE, JE ) )*ASCALE
+ SBETA = ( TEMP*P( JE, JE ) )*BSCALE
+ ACOEF = SBETA*ASCALE
+ BCOEFR = SALFAR*BSCALE
+ BCOEFI = ZERO
+*
+* Scale to avoid underflow
+*
+ SCALE = ONE
+ LSA = ABS( SBETA ).GE.SAFMIN .AND. ABS( ACOEF ).LT.SMALL
+ LSB = ABS( SALFAR ).GE.SAFMIN .AND. ABS( BCOEFR ).LT.
+ $ SMALL
+ IF( LSA )
+ $ SCALE = ( SMALL / ABS( SBETA ) )*MIN( ANORM, BIG )
+ IF( LSB )
+ $ SCALE = MAX( SCALE, ( SMALL / ABS( SALFAR ) )*
+ $ MIN( BNORM, BIG ) )
+ IF( LSA .OR. LSB ) THEN
+ SCALE = MIN( SCALE, ONE /
+ $ ( SAFMIN*MAX( ONE, ABS( ACOEF ),
+ $ ABS( BCOEFR ) ) ) )
+ IF( LSA ) THEN
+ ACOEF = ASCALE*( SCALE*SBETA )
+ ELSE
+ ACOEF = SCALE*ACOEF
+ END IF
+ IF( LSB ) THEN
+ BCOEFR = BSCALE*( SCALE*SALFAR )
+ ELSE
+ BCOEFR = SCALE*BCOEFR
+ END IF
+ END IF
+ ACOEFA = ABS( ACOEF )
+ BCOEFA = ABS( BCOEFR )
+*
+* First component is 1
+*
+ WORK( 2*N+JE ) = ONE
+ XMAX = ONE
+ ELSE
+*
+* Complex eigenvalue
+*
+ CALL DLAG2( S( JE, JE ), LDS, P( JE, JE ), LDP,
+ $ SAFMIN*SAFETY, ACOEF, TEMP, BCOEFR, TEMP2,
+ $ BCOEFI )
+ BCOEFI = -BCOEFI
+ IF( BCOEFI.EQ.ZERO ) THEN
+ INFO = JE
+ RETURN
+ END IF
+*
+* Scale to avoid over/underflow
+*
+ ACOEFA = ABS( ACOEF )
+ BCOEFA = ABS( BCOEFR ) + ABS( BCOEFI )
+ SCALE = ONE
+ IF( ACOEFA*ULP.LT.SAFMIN .AND. ACOEFA.GE.SAFMIN )
+ $ SCALE = ( SAFMIN / ULP ) / ACOEFA
+ IF( BCOEFA*ULP.LT.SAFMIN .AND. BCOEFA.GE.SAFMIN )
+ $ SCALE = MAX( SCALE, ( SAFMIN / ULP ) / BCOEFA )
+ IF( SAFMIN*ACOEFA.GT.ASCALE )
+ $ SCALE = ASCALE / ( SAFMIN*ACOEFA )
+ IF( SAFMIN*BCOEFA.GT.BSCALE )
+ $ SCALE = MIN( SCALE, BSCALE / ( SAFMIN*BCOEFA ) )
+ IF( SCALE.NE.ONE ) THEN
+ ACOEF = SCALE*ACOEF
+ ACOEFA = ABS( ACOEF )
+ BCOEFR = SCALE*BCOEFR
+ BCOEFI = SCALE*BCOEFI
+ BCOEFA = ABS( BCOEFR ) + ABS( BCOEFI )
+ END IF
+*
+* Compute first two components of eigenvector
+*
+ TEMP = ACOEF*S( JE+1, JE )
+ TEMP2R = ACOEF*S( JE, JE ) - BCOEFR*P( JE, JE )
+ TEMP2I = -BCOEFI*P( JE, JE )
+ IF( ABS( TEMP ).GT.ABS( TEMP2R )+ABS( TEMP2I ) ) THEN
+ WORK( 2*N+JE ) = ONE
+ WORK( 3*N+JE ) = ZERO
+ WORK( 2*N+JE+1 ) = -TEMP2R / TEMP
+ WORK( 3*N+JE+1 ) = -TEMP2I / TEMP
+ ELSE
+ WORK( 2*N+JE+1 ) = ONE
+ WORK( 3*N+JE+1 ) = ZERO
+ TEMP = ACOEF*S( JE, JE+1 )
+ WORK( 2*N+JE ) = ( BCOEFR*P( JE+1, JE+1 )-ACOEF*
+ $ S( JE+1, JE+1 ) ) / TEMP
+ WORK( 3*N+JE ) = BCOEFI*P( JE+1, JE+1 ) / TEMP
+ END IF
+ XMAX = MAX( ABS( WORK( 2*N+JE ) )+ABS( WORK( 3*N+JE ) ),
+ $ ABS( WORK( 2*N+JE+1 ) )+ABS( WORK( 3*N+JE+1 ) ) )
+ END IF
+*
+ DMIN = MAX( ULP*ACOEFA*ANORM, ULP*BCOEFA*BNORM, SAFMIN )
+*
+* T
+* Triangular solve of (a A - b B) y = 0
+*
+* T
+* (rowwise in (a A - b B) , or columnwise in (a A - b B) )
+*
+ IL2BY2 = .FALSE.
+*
+ DO 160 J = JE + NW, N
+ IF( IL2BY2 ) THEN
+ IL2BY2 = .FALSE.
+ GO TO 160
+ END IF
+*
+ NA = 1
+ BDIAG( 1 ) = P( J, J )
+ IF( J.LT.N ) THEN
+ IF( S( J+1, J ).NE.ZERO ) THEN
+ IL2BY2 = .TRUE.
+ BDIAG( 2 ) = P( J+1, J+1 )
+ NA = 2
+ END IF
+ END IF
+*
+* Check whether scaling is necessary for dot products
+*
+ XSCALE = ONE / MAX( ONE, XMAX )
+ TEMP = MAX( WORK( J ), WORK( N+J ),
+ $ ACOEFA*WORK( J )+BCOEFA*WORK( N+J ) )
+ IF( IL2BY2 )
+ $ TEMP = MAX( TEMP, WORK( J+1 ), WORK( N+J+1 ),
+ $ ACOEFA*WORK( J+1 )+BCOEFA*WORK( N+J+1 ) )
+ IF( TEMP.GT.BIGNUM*XSCALE ) THEN
+ DO 90 JW = 0, NW - 1
+ DO 80 JR = JE, J - 1
+ WORK( ( JW+2 )*N+JR ) = XSCALE*
+ $ WORK( ( JW+2 )*N+JR )
+ 80 CONTINUE
+ 90 CONTINUE
+ XMAX = XMAX*XSCALE
+ END IF
+*
+* Compute dot products
+*
+* j-1
+* SUM = sum conjg( a*S(k,j) - b*P(k,j) )*x(k)
+* k=je
+*
+* To reduce the op count, this is done as
+*
+* _ j-1 _ j-1
+* a*conjg( sum S(k,j)*x(k) ) - b*conjg( sum P(k,j)*x(k) )
+* k=je k=je
+*
+* which may cause underflow problems if A or B are close
+* to underflow. (E.g., less than SMALL.)
+*
+*
+* A series of compiler directives to defeat vectorization
+* for the next loop
+*
+*$PL$ CMCHAR=' '
+CDIR$ NEXTSCALAR
+C$DIR SCALAR
+CDIR$ NEXT SCALAR
+CVD$L NOVECTOR
+CDEC$ NOVECTOR
+CVD$ NOVECTOR
+*VDIR NOVECTOR
+*VOCL LOOP,SCALAR
+CIBM PREFER SCALAR
+*$PL$ CMCHAR='*'
+*
+ DO 120 JW = 1, NW
+*
+*$PL$ CMCHAR=' '
+CDIR$ NEXTSCALAR
+C$DIR SCALAR
+CDIR$ NEXT SCALAR
+CVD$L NOVECTOR
+CDEC$ NOVECTOR
+CVD$ NOVECTOR
+*VDIR NOVECTOR
+*VOCL LOOP,SCALAR
+CIBM PREFER SCALAR
+*$PL$ CMCHAR='*'
+*
+ DO 110 JA = 1, NA
+ SUMS( JA, JW ) = ZERO
+ SUMP( JA, JW ) = ZERO
+*
+ DO 100 JR = JE, J - 1
+ SUMS( JA, JW ) = SUMS( JA, JW ) +
+ $ S( JR, J+JA-1 )*
+ $ WORK( ( JW+1 )*N+JR )
+ SUMP( JA, JW ) = SUMP( JA, JW ) +
+ $ P( JR, J+JA-1 )*
+ $ WORK( ( JW+1 )*N+JR )
+ 100 CONTINUE
+ 110 CONTINUE
+ 120 CONTINUE
+*
+*$PL$ CMCHAR=' '
+CDIR$ NEXTSCALAR
+C$DIR SCALAR
+CDIR$ NEXT SCALAR
+CVD$L NOVECTOR
+CDEC$ NOVECTOR
+CVD$ NOVECTOR
+*VDIR NOVECTOR
+*VOCL LOOP,SCALAR
+CIBM PREFER SCALAR
+*$PL$ CMCHAR='*'
+*
+ DO 130 JA = 1, NA
+ IF( ILCPLX ) THEN
+ SUM( JA, 1 ) = -ACOEF*SUMS( JA, 1 ) +
+ $ BCOEFR*SUMP( JA, 1 ) -
+ $ BCOEFI*SUMP( JA, 2 )
+ SUM( JA, 2 ) = -ACOEF*SUMS( JA, 2 ) +
+ $ BCOEFR*SUMP( JA, 2 ) +
+ $ BCOEFI*SUMP( JA, 1 )
+ ELSE
+ SUM( JA, 1 ) = -ACOEF*SUMS( JA, 1 ) +
+ $ BCOEFR*SUMP( JA, 1 )
+ END IF
+ 130 CONTINUE
+*
+* T
+* Solve ( a A - b B ) y = SUM(,)
+* with scaling and perturbation of the denominator
+*
+ CALL DLALN2( .TRUE., NA, NW, DMIN, ACOEF, S( J, J ), LDS,
+ $ BDIAG( 1 ), BDIAG( 2 ), SUM, 2, BCOEFR,
+ $ BCOEFI, WORK( 2*N+J ), N, SCALE, TEMP,
+ $ IINFO )
+ IF( SCALE.LT.ONE ) THEN
+ DO 150 JW = 0, NW - 1
+ DO 140 JR = JE, J - 1
+ WORK( ( JW+2 )*N+JR ) = SCALE*
+ $ WORK( ( JW+2 )*N+JR )
+ 140 CONTINUE
+ 150 CONTINUE
+ XMAX = SCALE*XMAX
+ END IF
+ XMAX = MAX( XMAX, TEMP )
+ 160 CONTINUE
+*
+* Copy eigenvector to VL, back transforming if
+* HOWMNY='B'.
+*
+ IEIG = IEIG + 1
+ IF( ILBACK ) THEN
+ DO 170 JW = 0, NW - 1
+ CALL DGEMV( 'N', N, N+1-JE, ONE, VL( 1, JE ), LDVL,
+ $ WORK( ( JW+2 )*N+JE ), 1, ZERO,
+ $ WORK( ( JW+4 )*N+1 ), 1 )
+ 170 CONTINUE
+ CALL DLACPY( ' ', N, NW, WORK( 4*N+1 ), N, VL( 1, JE ),
+ $ LDVL )
+ IBEG = 1
+ ELSE
+ CALL DLACPY( ' ', N, NW, WORK( 2*N+1 ), N, VL( 1, IEIG ),
+ $ LDVL )
+ IBEG = JE
+ END IF
+*
+* Scale eigenvector
+*
+ XMAX = ZERO
+ IF( ILCPLX ) THEN
+ DO 180 J = IBEG, N
+ XMAX = MAX( XMAX, ABS( VL( J, IEIG ) )+
+ $ ABS( VL( J, IEIG+1 ) ) )
+ 180 CONTINUE
+ ELSE
+ DO 190 J = IBEG, N
+ XMAX = MAX( XMAX, ABS( VL( J, IEIG ) ) )
+ 190 CONTINUE
+ END IF
+*
+ IF( XMAX.GT.SAFMIN ) THEN
+ XSCALE = ONE / XMAX
+*
+ DO 210 JW = 0, NW - 1
+ DO 200 JR = IBEG, N
+ VL( JR, IEIG+JW ) = XSCALE*VL( JR, IEIG+JW )
+ 200 CONTINUE
+ 210 CONTINUE
+ END IF
+ IEIG = IEIG + NW - 1
+*
+ 220 CONTINUE
+ END IF
+*
+* Right eigenvectors
+*
+ IF( COMPR ) THEN
+ IEIG = IM + 1
+*
+* Main loop over eigenvalues
+*
+ ILCPLX = .FALSE.
+ DO 500 JE = N, 1, -1
+*
+* Skip this iteration if (a) HOWMNY='S' and SELECT=.FALSE., or
+* (b) this would be the second of a complex pair.
+* Check for complex eigenvalue, so as to be sure of which
+* entry(-ies) of SELECT to look at -- if complex, SELECT(JE)
+* or SELECT(JE-1).
+* If this is a complex pair, the 2-by-2 diagonal block
+* corresponding to the eigenvalue is in rows/columns JE-1:JE
+*
+ IF( ILCPLX ) THEN
+ ILCPLX = .FALSE.
+ GO TO 500
+ END IF
+ NW = 1
+ IF( JE.GT.1 ) THEN
+ IF( S( JE, JE-1 ).NE.ZERO ) THEN
+ ILCPLX = .TRUE.
+ NW = 2
+ END IF
+ END IF
+ IF( ILALL ) THEN
+ ILCOMP = .TRUE.
+ ELSE IF( ILCPLX ) THEN
+ ILCOMP = SELECT( JE ) .OR. SELECT( JE-1 )
+ ELSE
+ ILCOMP = SELECT( JE )
+ END IF
+ IF( .NOT.ILCOMP )
+ $ GO TO 500
+*
+* Decide if (a) singular pencil, (b) real eigenvalue, or
+* (c) complex eigenvalue.
+*
+ IF( .NOT.ILCPLX ) THEN
+ IF( ABS( S( JE, JE ) ).LE.SAFMIN .AND.
+ $ ABS( P( JE, JE ) ).LE.SAFMIN ) THEN
+*
+* Singular matrix pencil -- unit eigenvector
+*
+ IEIG = IEIG - 1
+ DO 230 JR = 1, N
+ VR( JR, IEIG ) = ZERO
+ 230 CONTINUE
+ VR( IEIG, IEIG ) = ONE
+ GO TO 500
+ END IF
+ END IF
+*
+* Clear vector
+*
+ DO 250 JW = 0, NW - 1
+ DO 240 JR = 1, N
+ WORK( ( JW+2 )*N+JR ) = ZERO
+ 240 CONTINUE
+ 250 CONTINUE
+*
+* Compute coefficients in ( a A - b B ) x = 0
+* a is ACOEF
+* b is BCOEFR + i*BCOEFI
+*
+ IF( .NOT.ILCPLX ) THEN
+*
+* Real eigenvalue
+*
+ TEMP = ONE / MAX( ABS( S( JE, JE ) )*ASCALE,
+ $ ABS( P( JE, JE ) )*BSCALE, SAFMIN )
+ SALFAR = ( TEMP*S( JE, JE ) )*ASCALE
+ SBETA = ( TEMP*P( JE, JE ) )*BSCALE
+ ACOEF = SBETA*ASCALE
+ BCOEFR = SALFAR*BSCALE
+ BCOEFI = ZERO
+*
+* Scale to avoid underflow
+*
+ SCALE = ONE
+ LSA = ABS( SBETA ).GE.SAFMIN .AND. ABS( ACOEF ).LT.SMALL
+ LSB = ABS( SALFAR ).GE.SAFMIN .AND. ABS( BCOEFR ).LT.
+ $ SMALL
+ IF( LSA )
+ $ SCALE = ( SMALL / ABS( SBETA ) )*MIN( ANORM, BIG )
+ IF( LSB )
+ $ SCALE = MAX( SCALE, ( SMALL / ABS( SALFAR ) )*
+ $ MIN( BNORM, BIG ) )
+ IF( LSA .OR. LSB ) THEN
+ SCALE = MIN( SCALE, ONE /
+ $ ( SAFMIN*MAX( ONE, ABS( ACOEF ),
+ $ ABS( BCOEFR ) ) ) )
+ IF( LSA ) THEN
+ ACOEF = ASCALE*( SCALE*SBETA )
+ ELSE
+ ACOEF = SCALE*ACOEF
+ END IF
+ IF( LSB ) THEN
+ BCOEFR = BSCALE*( SCALE*SALFAR )
+ ELSE
+ BCOEFR = SCALE*BCOEFR
+ END IF
+ END IF
+ ACOEFA = ABS( ACOEF )
+ BCOEFA = ABS( BCOEFR )
+*
+* First component is 1
+*
+ WORK( 2*N+JE ) = ONE
+ XMAX = ONE
+*
+* Compute contribution from column JE of A and B to sum
+* (See "Further Details", above.)
+*
+ DO 260 JR = 1, JE - 1
+ WORK( 2*N+JR ) = BCOEFR*P( JR, JE ) -
+ $ ACOEF*S( JR, JE )
+ 260 CONTINUE
+ ELSE
+*
+* Complex eigenvalue
+*
+ CALL DLAG2( S( JE-1, JE-1 ), LDS, P( JE-1, JE-1 ), LDP,
+ $ SAFMIN*SAFETY, ACOEF, TEMP, BCOEFR, TEMP2,
+ $ BCOEFI )
+ IF( BCOEFI.EQ.ZERO ) THEN
+ INFO = JE - 1
+ RETURN
+ END IF
+*
+* Scale to avoid over/underflow
+*
+ ACOEFA = ABS( ACOEF )
+ BCOEFA = ABS( BCOEFR ) + ABS( BCOEFI )
+ SCALE = ONE
+ IF( ACOEFA*ULP.LT.SAFMIN .AND. ACOEFA.GE.SAFMIN )
+ $ SCALE = ( SAFMIN / ULP ) / ACOEFA
+ IF( BCOEFA*ULP.LT.SAFMIN .AND. BCOEFA.GE.SAFMIN )
+ $ SCALE = MAX( SCALE, ( SAFMIN / ULP ) / BCOEFA )
+ IF( SAFMIN*ACOEFA.GT.ASCALE )
+ $ SCALE = ASCALE / ( SAFMIN*ACOEFA )
+ IF( SAFMIN*BCOEFA.GT.BSCALE )
+ $ SCALE = MIN( SCALE, BSCALE / ( SAFMIN*BCOEFA ) )
+ IF( SCALE.NE.ONE ) THEN
+ ACOEF = SCALE*ACOEF
+ ACOEFA = ABS( ACOEF )
+ BCOEFR = SCALE*BCOEFR
+ BCOEFI = SCALE*BCOEFI
+ BCOEFA = ABS( BCOEFR ) + ABS( BCOEFI )
+ END IF
+*
+* Compute first two components of eigenvector
+* and contribution to sums
+*
+ TEMP = ACOEF*S( JE, JE-1 )
+ TEMP2R = ACOEF*S( JE, JE ) - BCOEFR*P( JE, JE )
+ TEMP2I = -BCOEFI*P( JE, JE )
+ IF( ABS( TEMP ).GE.ABS( TEMP2R )+ABS( TEMP2I ) ) THEN
+ WORK( 2*N+JE ) = ONE
+ WORK( 3*N+JE ) = ZERO
+ WORK( 2*N+JE-1 ) = -TEMP2R / TEMP
+ WORK( 3*N+JE-1 ) = -TEMP2I / TEMP
+ ELSE
+ WORK( 2*N+JE-1 ) = ONE
+ WORK( 3*N+JE-1 ) = ZERO
+ TEMP = ACOEF*S( JE-1, JE )
+ WORK( 2*N+JE ) = ( BCOEFR*P( JE-1, JE-1 )-ACOEF*
+ $ S( JE-1, JE-1 ) ) / TEMP
+ WORK( 3*N+JE ) = BCOEFI*P( JE-1, JE-1 ) / TEMP
+ END IF
+*
+ XMAX = MAX( ABS( WORK( 2*N+JE ) )+ABS( WORK( 3*N+JE ) ),
+ $ ABS( WORK( 2*N+JE-1 ) )+ABS( WORK( 3*N+JE-1 ) ) )
+*
+* Compute contribution from columns JE and JE-1
+* of A and B to the sums.
+*
+ CREALA = ACOEF*WORK( 2*N+JE-1 )
+ CIMAGA = ACOEF*WORK( 3*N+JE-1 )
+ CREALB = BCOEFR*WORK( 2*N+JE-1 ) -
+ $ BCOEFI*WORK( 3*N+JE-1 )
+ CIMAGB = BCOEFI*WORK( 2*N+JE-1 ) +
+ $ BCOEFR*WORK( 3*N+JE-1 )
+ CRE2A = ACOEF*WORK( 2*N+JE )
+ CIM2A = ACOEF*WORK( 3*N+JE )
+ CRE2B = BCOEFR*WORK( 2*N+JE ) - BCOEFI*WORK( 3*N+JE )
+ CIM2B = BCOEFI*WORK( 2*N+JE ) + BCOEFR*WORK( 3*N+JE )
+ DO 270 JR = 1, JE - 2
+ WORK( 2*N+JR ) = -CREALA*S( JR, JE-1 ) +
+ $ CREALB*P( JR, JE-1 ) -
+ $ CRE2A*S( JR, JE ) + CRE2B*P( JR, JE )
+ WORK( 3*N+JR ) = -CIMAGA*S( JR, JE-1 ) +
+ $ CIMAGB*P( JR, JE-1 ) -
+ $ CIM2A*S( JR, JE ) + CIM2B*P( JR, JE )
+ 270 CONTINUE
+ END IF
+*
+ DMIN = MAX( ULP*ACOEFA*ANORM, ULP*BCOEFA*BNORM, SAFMIN )
+*
+* Columnwise triangular solve of (a A - b B) x = 0
+*
+ IL2BY2 = .FALSE.
+ DO 370 J = JE - NW, 1, -1
+*
+* If a 2-by-2 block, is in position j-1:j, wait until
+* next iteration to process it (when it will be j:j+1)
+*
+ IF( .NOT.IL2BY2 .AND. J.GT.1 ) THEN
+ IF( S( J, J-1 ).NE.ZERO ) THEN
+ IL2BY2 = .TRUE.
+ GO TO 370
+ END IF
+ END IF
+ BDIAG( 1 ) = P( J, J )
+ IF( IL2BY2 ) THEN
+ NA = 2
+ BDIAG( 2 ) = P( J+1, J+1 )
+ ELSE
+ NA = 1
+ END IF
+*
+* Compute x(j) (and x(j+1), if 2-by-2 block)
+*
+ CALL DLALN2( .FALSE., NA, NW, DMIN, ACOEF, S( J, J ),
+ $ LDS, BDIAG( 1 ), BDIAG( 2 ), WORK( 2*N+J ),
+ $ N, BCOEFR, BCOEFI, SUM, 2, SCALE, TEMP,
+ $ IINFO )
+ IF( SCALE.LT.ONE ) THEN
+*
+ DO 290 JW = 0, NW - 1
+ DO 280 JR = 1, JE
+ WORK( ( JW+2 )*N+JR ) = SCALE*
+ $ WORK( ( JW+2 )*N+JR )
+ 280 CONTINUE
+ 290 CONTINUE
+ END IF
+ XMAX = MAX( SCALE*XMAX, TEMP )
+*
+ DO 310 JW = 1, NW
+ DO 300 JA = 1, NA
+ WORK( ( JW+1 )*N+J+JA-1 ) = SUM( JA, JW )
+ 300 CONTINUE
+ 310 CONTINUE
+*
+* w = w + x(j)*(a S(*,j) - b P(*,j) ) with scaling
+*
+ IF( J.GT.1 ) THEN
+*
+* Check whether scaling is necessary for sum.
+*
+ XSCALE = ONE / MAX( ONE, XMAX )
+ TEMP = ACOEFA*WORK( J ) + BCOEFA*WORK( N+J )
+ IF( IL2BY2 )
+ $ TEMP = MAX( TEMP, ACOEFA*WORK( J+1 )+BCOEFA*
+ $ WORK( N+J+1 ) )
+ TEMP = MAX( TEMP, ACOEFA, BCOEFA )
+ IF( TEMP.GT.BIGNUM*XSCALE ) THEN
+*
+ DO 330 JW = 0, NW - 1
+ DO 320 JR = 1, JE
+ WORK( ( JW+2 )*N+JR ) = XSCALE*
+ $ WORK( ( JW+2 )*N+JR )
+ 320 CONTINUE
+ 330 CONTINUE
+ XMAX = XMAX*XSCALE
+ END IF
+*
+* Compute the contributions of the off-diagonals of
+* column j (and j+1, if 2-by-2 block) of A and B to the
+* sums.
+*
+*
+ DO 360 JA = 1, NA
+ IF( ILCPLX ) THEN
+ CREALA = ACOEF*WORK( 2*N+J+JA-1 )
+ CIMAGA = ACOEF*WORK( 3*N+J+JA-1 )
+ CREALB = BCOEFR*WORK( 2*N+J+JA-1 ) -
+ $ BCOEFI*WORK( 3*N+J+JA-1 )
+ CIMAGB = BCOEFI*WORK( 2*N+J+JA-1 ) +
+ $ BCOEFR*WORK( 3*N+J+JA-1 )
+ DO 340 JR = 1, J - 1
+ WORK( 2*N+JR ) = WORK( 2*N+JR ) -
+ $ CREALA*S( JR, J+JA-1 ) +
+ $ CREALB*P( JR, J+JA-1 )
+ WORK( 3*N+JR ) = WORK( 3*N+JR ) -
+ $ CIMAGA*S( JR, J+JA-1 ) +
+ $ CIMAGB*P( JR, J+JA-1 )
+ 340 CONTINUE
+ ELSE
+ CREALA = ACOEF*WORK( 2*N+J+JA-1 )
+ CREALB = BCOEFR*WORK( 2*N+J+JA-1 )
+ DO 350 JR = 1, J - 1
+ WORK( 2*N+JR ) = WORK( 2*N+JR ) -
+ $ CREALA*S( JR, J+JA-1 ) +
+ $ CREALB*P( JR, J+JA-1 )
+ 350 CONTINUE
+ END IF
+ 360 CONTINUE
+ END IF
+*
+ IL2BY2 = .FALSE.
+ 370 CONTINUE
+*
+* Copy eigenvector to VR, back transforming if
+* HOWMNY='B'.
+*
+ IEIG = IEIG - NW
+ IF( ILBACK ) THEN
+*
+ DO 410 JW = 0, NW - 1
+ DO 380 JR = 1, N
+ WORK( ( JW+4 )*N+JR ) = WORK( ( JW+2 )*N+1 )*
+ $ VR( JR, 1 )
+ 380 CONTINUE
+*
+* A series of compiler directives to defeat
+* vectorization for the next loop
+*
+*
+ DO 400 JC = 2, JE
+ DO 390 JR = 1, N
+ WORK( ( JW+4 )*N+JR ) = WORK( ( JW+4 )*N+JR ) +
+ $ WORK( ( JW+2 )*N+JC )*VR( JR, JC )
+ 390 CONTINUE
+ 400 CONTINUE
+ 410 CONTINUE
+*
+ DO 430 JW = 0, NW - 1
+ DO 420 JR = 1, N
+ VR( JR, IEIG+JW ) = WORK( ( JW+4 )*N+JR )
+ 420 CONTINUE
+ 430 CONTINUE
+*
+ IEND = N
+ ELSE
+ DO 450 JW = 0, NW - 1
+ DO 440 JR = 1, N
+ VR( JR, IEIG+JW ) = WORK( ( JW+2 )*N+JR )
+ 440 CONTINUE
+ 450 CONTINUE
+*
+ IEND = JE
+ END IF
+*
+* Scale eigenvector
+*
+ XMAX = ZERO
+ IF( ILCPLX ) THEN
+ DO 460 J = 1, IEND
+ XMAX = MAX( XMAX, ABS( VR( J, IEIG ) )+
+ $ ABS( VR( J, IEIG+1 ) ) )
+ 460 CONTINUE
+ ELSE
+ DO 470 J = 1, IEND
+ XMAX = MAX( XMAX, ABS( VR( J, IEIG ) ) )
+ 470 CONTINUE
+ END IF
+*
+ IF( XMAX.GT.SAFMIN ) THEN
+ XSCALE = ONE / XMAX
+ DO 490 JW = 0, NW - 1
+ DO 480 JR = 1, IEND
+ VR( JR, IEIG+JW ) = XSCALE*VR( JR, IEIG+JW )
+ 480 CONTINUE
+ 490 CONTINUE
+ END IF
+ 500 CONTINUE
+ END IF
+*
+ RETURN
+*
+* End of DTGEVC
+*
+ END