diff options
author | Ankit Raj | 2017-06-21 10:26:59 +0530 |
---|---|---|
committer | Ankit Raj | 2017-06-21 10:26:59 +0530 |
commit | a555820564d9f2e95ca8c97871339d3a5a2081c3 (patch) | |
tree | adb074b66a8e6750209880e6932305ce0a94c8bf /2.3-1/src/fortran/lapack/dsytrs.f | |
download | Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.gz Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.bz2 Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.zip |
Updated Scilab2C
Diffstat (limited to '2.3-1/src/fortran/lapack/dsytrs.f')
-rw-r--r-- | 2.3-1/src/fortran/lapack/dsytrs.f | 369 |
1 files changed, 369 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dsytrs.f b/2.3-1/src/fortran/lapack/dsytrs.f new file mode 100644 index 00000000..163ed5b9 --- /dev/null +++ b/2.3-1/src/fortran/lapack/dsytrs.f @@ -0,0 +1,369 @@ + SUBROUTINE DSYTRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO ) +* +* -- LAPACK routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + CHARACTER UPLO + INTEGER INFO, LDA, LDB, N, NRHS +* .. +* .. Array Arguments .. + INTEGER IPIV( * ) + DOUBLE PRECISION A( LDA, * ), B( LDB, * ) +* .. +* +* Purpose +* ======= +* +* DSYTRS solves a system of linear equations A*X = B with a real +* symmetric matrix A using the factorization A = U*D*U**T or +* A = L*D*L**T computed by DSYTRF. +* +* Arguments +* ========= +* +* UPLO (input) CHARACTER*1 +* Specifies whether the details of the factorization are stored +* as an upper or lower triangular matrix. +* = 'U': Upper triangular, form is A = U*D*U**T; +* = 'L': Lower triangular, form is A = L*D*L**T. +* +* N (input) INTEGER +* The order of the matrix A. N >= 0. +* +* NRHS (input) INTEGER +* The number of right hand sides, i.e., the number of columns +* of the matrix B. NRHS >= 0. +* +* A (input) DOUBLE PRECISION array, dimension (LDA,N) +* The block diagonal matrix D and the multipliers used to +* obtain the factor U or L as computed by DSYTRF. +* +* LDA (input) INTEGER +* The leading dimension of the array A. LDA >= max(1,N). +* +* IPIV (input) INTEGER array, dimension (N) +* Details of the interchanges and the block structure of D +* as determined by DSYTRF. +* +* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) +* On entry, the right hand side matrix B. +* On exit, the solution matrix X. +* +* LDB (input) INTEGER +* The leading dimension of the array B. LDB >= max(1,N). +* +* INFO (output) INTEGER +* = 0: successful exit +* < 0: if INFO = -i, the i-th argument had an illegal value +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ONE + PARAMETER ( ONE = 1.0D+0 ) +* .. +* .. Local Scalars .. + LOGICAL UPPER + INTEGER J, K, KP + DOUBLE PRECISION AK, AKM1, AKM1K, BK, BKM1, DENOM +* .. +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. +* .. External Subroutines .. + EXTERNAL DGEMV, DGER, DSCAL, DSWAP, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. +* .. Executable Statements .. +* + INFO = 0 + UPPER = LSAME( UPLO, 'U' ) + IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -2 + ELSE IF( NRHS.LT.0 ) THEN + INFO = -3 + ELSE IF( LDA.LT.MAX( 1, N ) ) THEN + INFO = -5 + ELSE IF( LDB.LT.MAX( 1, N ) ) THEN + INFO = -8 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DSYTRS', -INFO ) + RETURN + END IF +* +* Quick return if possible +* + IF( N.EQ.0 .OR. NRHS.EQ.0 ) + $ RETURN +* + IF( UPPER ) THEN +* +* Solve A*X = B, where A = U*D*U'. +* +* First solve U*D*X = B, overwriting B with X. +* +* K is the main loop index, decreasing from N to 1 in steps of +* 1 or 2, depending on the size of the diagonal blocks. +* + K = N + 10 CONTINUE +* +* If K < 1, exit from loop. +* + IF( K.LT.1 ) + $ GO TO 30 +* + IF( IPIV( K ).GT.0 ) THEN +* +* 1 x 1 diagonal block +* +* Interchange rows K and IPIV(K). +* + KP = IPIV( K ) + IF( KP.NE.K ) + $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) +* +* Multiply by inv(U(K)), where U(K) is the transformation +* stored in column K of A. +* + CALL DGER( K-1, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB, + $ B( 1, 1 ), LDB ) +* +* Multiply by the inverse of the diagonal block. +* + CALL DSCAL( NRHS, ONE / A( K, K ), B( K, 1 ), LDB ) + K = K - 1 + ELSE +* +* 2 x 2 diagonal block +* +* Interchange rows K-1 and -IPIV(K). +* + KP = -IPIV( K ) + IF( KP.NE.K-1 ) + $ CALL DSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB ) +* +* Multiply by inv(U(K)), where U(K) is the transformation +* stored in columns K-1 and K of A. +* + CALL DGER( K-2, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB, + $ B( 1, 1 ), LDB ) + CALL DGER( K-2, NRHS, -ONE, A( 1, K-1 ), 1, B( K-1, 1 ), + $ LDB, B( 1, 1 ), LDB ) +* +* Multiply by the inverse of the diagonal block. +* + AKM1K = A( K-1, K ) + AKM1 = A( K-1, K-1 ) / AKM1K + AK = A( K, K ) / AKM1K + DENOM = AKM1*AK - ONE + DO 20 J = 1, NRHS + BKM1 = B( K-1, J ) / AKM1K + BK = B( K, J ) / AKM1K + B( K-1, J ) = ( AK*BKM1-BK ) / DENOM + B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM + 20 CONTINUE + K = K - 2 + END IF +* + GO TO 10 + 30 CONTINUE +* +* Next solve U'*X = B, overwriting B with X. +* +* K is the main loop index, increasing from 1 to N in steps of +* 1 or 2, depending on the size of the diagonal blocks. +* + K = 1 + 40 CONTINUE +* +* If K > N, exit from loop. +* + IF( K.GT.N ) + $ GO TO 50 +* + IF( IPIV( K ).GT.0 ) THEN +* +* 1 x 1 diagonal block +* +* Multiply by inv(U'(K)), where U(K) is the transformation +* stored in column K of A. +* + CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, A( 1, K ), + $ 1, ONE, B( K, 1 ), LDB ) +* +* Interchange rows K and IPIV(K). +* + KP = IPIV( K ) + IF( KP.NE.K ) + $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) + K = K + 1 + ELSE +* +* 2 x 2 diagonal block +* +* Multiply by inv(U'(K+1)), where U(K+1) is the transformation +* stored in columns K and K+1 of A. +* + CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, A( 1, K ), + $ 1, ONE, B( K, 1 ), LDB ) + CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, + $ A( 1, K+1 ), 1, ONE, B( K+1, 1 ), LDB ) +* +* Interchange rows K and -IPIV(K). +* + KP = -IPIV( K ) + IF( KP.NE.K ) + $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) + K = K + 2 + END IF +* + GO TO 40 + 50 CONTINUE +* + ELSE +* +* Solve A*X = B, where A = L*D*L'. +* +* First solve L*D*X = B, overwriting B with X. +* +* K is the main loop index, increasing from 1 to N in steps of +* 1 or 2, depending on the size of the diagonal blocks. +* + K = 1 + 60 CONTINUE +* +* If K > N, exit from loop. +* + IF( K.GT.N ) + $ GO TO 80 +* + IF( IPIV( K ).GT.0 ) THEN +* +* 1 x 1 diagonal block +* +* Interchange rows K and IPIV(K). +* + KP = IPIV( K ) + IF( KP.NE.K ) + $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) +* +* Multiply by inv(L(K)), where L(K) is the transformation +* stored in column K of A. +* + IF( K.LT.N ) + $ CALL DGER( N-K, NRHS, -ONE, A( K+1, K ), 1, B( K, 1 ), + $ LDB, B( K+1, 1 ), LDB ) +* +* Multiply by the inverse of the diagonal block. +* + CALL DSCAL( NRHS, ONE / A( K, K ), B( K, 1 ), LDB ) + K = K + 1 + ELSE +* +* 2 x 2 diagonal block +* +* Interchange rows K+1 and -IPIV(K). +* + KP = -IPIV( K ) + IF( KP.NE.K+1 ) + $ CALL DSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB ) +* +* Multiply by inv(L(K)), where L(K) is the transformation +* stored in columns K and K+1 of A. +* + IF( K.LT.N-1 ) THEN + CALL DGER( N-K-1, NRHS, -ONE, A( K+2, K ), 1, B( K, 1 ), + $ LDB, B( K+2, 1 ), LDB ) + CALL DGER( N-K-1, NRHS, -ONE, A( K+2, K+1 ), 1, + $ B( K+1, 1 ), LDB, B( K+2, 1 ), LDB ) + END IF +* +* Multiply by the inverse of the diagonal block. +* + AKM1K = A( K+1, K ) + AKM1 = A( K, K ) / AKM1K + AK = A( K+1, K+1 ) / AKM1K + DENOM = AKM1*AK - ONE + DO 70 J = 1, NRHS + BKM1 = B( K, J ) / AKM1K + BK = B( K+1, J ) / AKM1K + B( K, J ) = ( AK*BKM1-BK ) / DENOM + B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM + 70 CONTINUE + K = K + 2 + END IF +* + GO TO 60 + 80 CONTINUE +* +* Next solve L'*X = B, overwriting B with X. +* +* K is the main loop index, decreasing from N to 1 in steps of +* 1 or 2, depending on the size of the diagonal blocks. +* + K = N + 90 CONTINUE +* +* If K < 1, exit from loop. +* + IF( K.LT.1 ) + $ GO TO 100 +* + IF( IPIV( K ).GT.0 ) THEN +* +* 1 x 1 diagonal block +* +* Multiply by inv(L'(K)), where L(K) is the transformation +* stored in column K of A. +* + IF( K.LT.N ) + $ CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ), + $ LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB ) +* +* Interchange rows K and IPIV(K). +* + KP = IPIV( K ) + IF( KP.NE.K ) + $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) + K = K - 1 + ELSE +* +* 2 x 2 diagonal block +* +* Multiply by inv(L'(K-1)), where L(K-1) is the transformation +* stored in columns K-1 and K of A. +* + IF( K.LT.N ) THEN + CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ), + $ LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB ) + CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ), + $ LDB, A( K+1, K-1 ), 1, ONE, B( K-1, 1 ), + $ LDB ) + END IF +* +* Interchange rows K and -IPIV(K). +* + KP = -IPIV( K ) + IF( KP.NE.K ) + $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) + K = K - 2 + END IF +* + GO TO 90 + 100 CONTINUE + END IF +* + RETURN +* +* End of DSYTRS +* + END |