summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dsysv.f
diff options
context:
space:
mode:
authorSandeep Gupta2017-06-18 23:55:40 +0530
committerSandeep Gupta2017-06-18 23:55:40 +0530
commitb43eccd4cffed5bd1017c5821524fb6e49202f78 (patch)
tree4c53d798252cbeae9bcf7dc9604524b20bb10f27 /2.3-1/src/fortran/lapack/dsysv.f
downloadScilab2C-b43eccd4cffed5bd1017c5821524fb6e49202f78.tar.gz
Scilab2C-b43eccd4cffed5bd1017c5821524fb6e49202f78.tar.bz2
Scilab2C-b43eccd4cffed5bd1017c5821524fb6e49202f78.zip
First commit
Diffstat (limited to '2.3-1/src/fortran/lapack/dsysv.f')
-rw-r--r--2.3-1/src/fortran/lapack/dsysv.f174
1 files changed, 174 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dsysv.f b/2.3-1/src/fortran/lapack/dsysv.f
new file mode 100644
index 00000000..add53850
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dsysv.f
@@ -0,0 +1,174 @@
+ SUBROUTINE DSYSV( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
+ $ LWORK, INFO )
+*
+* -- LAPACK driver routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, LDA, LDB, LWORK, N, NRHS
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DSYSV computes the solution to a real system of linear equations
+* A * X = B,
+* where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
+* matrices.
+*
+* The diagonal pivoting method is used to factor A as
+* A = U * D * U**T, if UPLO = 'U', or
+* A = L * D * L**T, if UPLO = 'L',
+* where U (or L) is a product of permutation and unit upper (lower)
+* triangular matrices, and D is symmetric and block diagonal with
+* 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then
+* used to solve the system of equations A * X = B.
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* = 'U': Upper triangle of A is stored;
+* = 'L': Lower triangle of A is stored.
+*
+* N (input) INTEGER
+* The number of linear equations, i.e., the order of the
+* matrix A. N >= 0.
+*
+* NRHS (input) INTEGER
+* The number of right hand sides, i.e., the number of columns
+* of the matrix B. NRHS >= 0.
+*
+* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+* On entry, the symmetric matrix A. If UPLO = 'U', the leading
+* N-by-N upper triangular part of A contains the upper
+* triangular part of the matrix A, and the strictly lower
+* triangular part of A is not referenced. If UPLO = 'L', the
+* leading N-by-N lower triangular part of A contains the lower
+* triangular part of the matrix A, and the strictly upper
+* triangular part of A is not referenced.
+*
+* On exit, if INFO = 0, the block diagonal matrix D and the
+* multipliers used to obtain the factor U or L from the
+* factorization A = U*D*U**T or A = L*D*L**T as computed by
+* DSYTRF.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* IPIV (output) INTEGER array, dimension (N)
+* Details of the interchanges and the block structure of D, as
+* determined by DSYTRF. If IPIV(k) > 0, then rows and columns
+* k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
+* diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
+* then rows and columns k-1 and -IPIV(k) were interchanged and
+* D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and
+* IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
+* -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
+* diagonal block.
+*
+* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
+* On entry, the N-by-NRHS right hand side matrix B.
+* On exit, if INFO = 0, the N-by-NRHS solution matrix X.
+*
+* LDB (input) INTEGER
+* The leading dimension of the array B. LDB >= max(1,N).
+*
+* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The length of WORK. LWORK >= 1, and for best performance
+* LWORK >= max(1,N*NB), where NB is the optimal blocksize for
+* DSYTRF.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+* > 0: if INFO = i, D(i,i) is exactly zero. The factorization
+* has been completed, but the block diagonal matrix D is
+* exactly singular, so the solution could not be computed.
+*
+* =====================================================================
+*
+* .. Local Scalars ..
+ LOGICAL LQUERY
+ INTEGER LWKOPT, NB
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ EXTERNAL LSAME, ILAENV
+* ..
+* .. External Subroutines ..
+ EXTERNAL DSYTRF, DSYTRS, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -5
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -8
+ ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
+ INFO = -10
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+ IF( N.EQ.0 ) THEN
+ LWKOPT = 1
+ ELSE
+ NB = ILAENV( 1, 'DSYTRF', UPLO, N, -1, -1, -1 )
+ LWKOPT = N*NB
+ END IF
+ WORK( 1 ) = LWKOPT
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DSYSV ', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Compute the factorization A = U*D*U' or A = L*D*L'.
+*
+ CALL DSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
+ IF( INFO.EQ.0 ) THEN
+*
+* Solve the system A*X = B, overwriting B with X.
+*
+ CALL DSYTRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
+*
+ END IF
+*
+ WORK( 1 ) = LWKOPT
+*
+ RETURN
+*
+* End of DSYSV
+*
+ END