summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dpotrf.f
diff options
context:
space:
mode:
authorSiddhesh Wani2015-05-25 14:46:31 +0530
committerSiddhesh Wani2015-05-25 14:46:31 +0530
commit6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26 (patch)
tree1b7bd89fdcfd01715713d8a15db471dc75a96bbf /2.3-1/src/fortran/lapack/dpotrf.f
downloadScilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.gz
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.bz2
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.zip
Original Version
Diffstat (limited to '2.3-1/src/fortran/lapack/dpotrf.f')
-rw-r--r--2.3-1/src/fortran/lapack/dpotrf.f183
1 files changed, 183 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dpotrf.f b/2.3-1/src/fortran/lapack/dpotrf.f
new file mode 100644
index 00000000..8449df6d
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dpotrf.f
@@ -0,0 +1,183 @@
+ SUBROUTINE DPOTRF( UPLO, N, A, LDA, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, LDA, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * )
+* ..
+*
+* Purpose
+* =======
+*
+* DPOTRF computes the Cholesky factorization of a real symmetric
+* positive definite matrix A.
+*
+* The factorization has the form
+* A = U**T * U, if UPLO = 'U', or
+* A = L * L**T, if UPLO = 'L',
+* where U is an upper triangular matrix and L is lower triangular.
+*
+* This is the block version of the algorithm, calling Level 3 BLAS.
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* = 'U': Upper triangle of A is stored;
+* = 'L': Lower triangle of A is stored.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+* On entry, the symmetric matrix A. If UPLO = 'U', the leading
+* N-by-N upper triangular part of A contains the upper
+* triangular part of the matrix A, and the strictly lower
+* triangular part of A is not referenced. If UPLO = 'L', the
+* leading N-by-N lower triangular part of A contains the lower
+* triangular part of the matrix A, and the strictly upper
+* triangular part of A is not referenced.
+*
+* On exit, if INFO = 0, the factor U or L from the Cholesky
+* factorization A = U**T*U or A = L*L**T.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+* > 0: if INFO = i, the leading minor of order i is not
+* positive definite, and the factorization could not be
+* completed.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE
+ PARAMETER ( ONE = 1.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL UPPER
+ INTEGER J, JB, NB
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ EXTERNAL LSAME, ILAENV
+* ..
+* .. External Subroutines ..
+ EXTERNAL DGEMM, DPOTF2, DSYRK, DTRSM, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ UPPER = LSAME( UPLO, 'U' )
+ IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -4
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DPOTRF', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+* Determine the block size for this environment.
+*
+ NB = ILAENV( 1, 'DPOTRF', UPLO, N, -1, -1, -1 )
+ IF( NB.LE.1 .OR. NB.GE.N ) THEN
+*
+* Use unblocked code.
+*
+ CALL DPOTF2( UPLO, N, A, LDA, INFO )
+ ELSE
+*
+* Use blocked code.
+*
+ IF( UPPER ) THEN
+*
+* Compute the Cholesky factorization A = U'*U.
+*
+ DO 10 J = 1, N, NB
+*
+* Update and factorize the current diagonal block and test
+* for non-positive-definiteness.
+*
+ JB = MIN( NB, N-J+1 )
+ CALL DSYRK( 'Upper', 'Transpose', JB, J-1, -ONE,
+ $ A( 1, J ), LDA, ONE, A( J, J ), LDA )
+ CALL DPOTF2( 'Upper', JB, A( J, J ), LDA, INFO )
+ IF( INFO.NE.0 )
+ $ GO TO 30
+ IF( J+JB.LE.N ) THEN
+*
+* Compute the current block row.
+*
+ CALL DGEMM( 'Transpose', 'No transpose', JB, N-J-JB+1,
+ $ J-1, -ONE, A( 1, J ), LDA, A( 1, J+JB ),
+ $ LDA, ONE, A( J, J+JB ), LDA )
+ CALL DTRSM( 'Left', 'Upper', 'Transpose', 'Non-unit',
+ $ JB, N-J-JB+1, ONE, A( J, J ), LDA,
+ $ A( J, J+JB ), LDA )
+ END IF
+ 10 CONTINUE
+*
+ ELSE
+*
+* Compute the Cholesky factorization A = L*L'.
+*
+ DO 20 J = 1, N, NB
+*
+* Update and factorize the current diagonal block and test
+* for non-positive-definiteness.
+*
+ JB = MIN( NB, N-J+1 )
+ CALL DSYRK( 'Lower', 'No transpose', JB, J-1, -ONE,
+ $ A( J, 1 ), LDA, ONE, A( J, J ), LDA )
+ CALL DPOTF2( 'Lower', JB, A( J, J ), LDA, INFO )
+ IF( INFO.NE.0 )
+ $ GO TO 30
+ IF( J+JB.LE.N ) THEN
+*
+* Compute the current block column.
+*
+ CALL DGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
+ $ J-1, -ONE, A( J+JB, 1 ), LDA, A( J, 1 ),
+ $ LDA, ONE, A( J+JB, J ), LDA )
+ CALL DTRSM( 'Right', 'Lower', 'Transpose', 'Non-unit',
+ $ N-J-JB+1, JB, ONE, A( J, J ), LDA,
+ $ A( J+JB, J ), LDA )
+ END IF
+ 20 CONTINUE
+ END IF
+ END IF
+ GO TO 40
+*
+ 30 CONTINUE
+ INFO = INFO + J - 1
+*
+ 40 CONTINUE
+ RETURN
+*
+* End of DPOTRF
+*
+ END