summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dorgrq.f
diff options
context:
space:
mode:
authorAnkit Raj2017-06-21 10:26:59 +0530
committerAnkit Raj2017-06-21 10:26:59 +0530
commita555820564d9f2e95ca8c97871339d3a5a2081c3 (patch)
treeadb074b66a8e6750209880e6932305ce0a94c8bf /2.3-1/src/fortran/lapack/dorgrq.f
downloadScilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.gz
Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.bz2
Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.zip
Updated Scilab2C
Diffstat (limited to '2.3-1/src/fortran/lapack/dorgrq.f')
-rw-r--r--2.3-1/src/fortran/lapack/dorgrq.f222
1 files changed, 222 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dorgrq.f b/2.3-1/src/fortran/lapack/dorgrq.f
new file mode 100644
index 00000000..11633403
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dorgrq.f
@@ -0,0 +1,222 @@
+ SUBROUTINE DORGRQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, K, LDA, LWORK, M, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DORGRQ generates an M-by-N real matrix Q with orthonormal rows,
+* which is defined as the last M rows of a product of K elementary
+* reflectors of order N
+*
+* Q = H(1) H(2) . . . H(k)
+*
+* as returned by DGERQF.
+*
+* Arguments
+* =========
+*
+* M (input) INTEGER
+* The number of rows of the matrix Q. M >= 0.
+*
+* N (input) INTEGER
+* The number of columns of the matrix Q. N >= M.
+*
+* K (input) INTEGER
+* The number of elementary reflectors whose product defines the
+* matrix Q. M >= K >= 0.
+*
+* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+* On entry, the (m-k+i)-th row must contain the vector which
+* defines the elementary reflector H(i), for i = 1,2,...,k, as
+* returned by DGERQF in the last k rows of its array argument
+* A.
+* On exit, the M-by-N matrix Q.
+*
+* LDA (input) INTEGER
+* The first dimension of the array A. LDA >= max(1,M).
+*
+* TAU (input) DOUBLE PRECISION array, dimension (K)
+* TAU(i) must contain the scalar factor of the elementary
+* reflector H(i), as returned by DGERQF.
+*
+* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK. LWORK >= max(1,M).
+* For optimum performance LWORK >= M*NB, where NB is the
+* optimal blocksize.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument has an illegal value
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO
+ PARAMETER ( ZERO = 0.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY
+ INTEGER I, IB, II, IINFO, IWS, J, KK, L, LDWORK,
+ $ LWKOPT, NB, NBMIN, NX
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLARFB, DLARFT, DORGR2, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. External Functions ..
+ INTEGER ILAENV
+ EXTERNAL ILAENV
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ INFO = 0
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.M ) THEN
+ INFO = -2
+ ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -5
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+ IF( M.LE.0 ) THEN
+ LWKOPT = 1
+ ELSE
+ NB = ILAENV( 1, 'DORGRQ', ' ', M, N, K, -1 )
+ LWKOPT = M*NB
+ END IF
+ WORK( 1 ) = LWKOPT
+*
+ IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
+ INFO = -8
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DORGRQ', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( M.LE.0 ) THEN
+ RETURN
+ END IF
+*
+ NBMIN = 2
+ NX = 0
+ IWS = M
+ IF( NB.GT.1 .AND. NB.LT.K ) THEN
+*
+* Determine when to cross over from blocked to unblocked code.
+*
+ NX = MAX( 0, ILAENV( 3, 'DORGRQ', ' ', M, N, K, -1 ) )
+ IF( NX.LT.K ) THEN
+*
+* Determine if workspace is large enough for blocked code.
+*
+ LDWORK = M
+ IWS = LDWORK*NB
+ IF( LWORK.LT.IWS ) THEN
+*
+* Not enough workspace to use optimal NB: reduce NB and
+* determine the minimum value of NB.
+*
+ NB = LWORK / LDWORK
+ NBMIN = MAX( 2, ILAENV( 2, 'DORGRQ', ' ', M, N, K, -1 ) )
+ END IF
+ END IF
+ END IF
+*
+ IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
+*
+* Use blocked code after the first block.
+* The last kk rows are handled by the block method.
+*
+ KK = MIN( K, ( ( K-NX+NB-1 ) / NB )*NB )
+*
+* Set A(1:m-kk,n-kk+1:n) to zero.
+*
+ DO 20 J = N - KK + 1, N
+ DO 10 I = 1, M - KK
+ A( I, J ) = ZERO
+ 10 CONTINUE
+ 20 CONTINUE
+ ELSE
+ KK = 0
+ END IF
+*
+* Use unblocked code for the first or only block.
+*
+ CALL DORGR2( M-KK, N-KK, K-KK, A, LDA, TAU, WORK, IINFO )
+*
+ IF( KK.GT.0 ) THEN
+*
+* Use blocked code
+*
+ DO 50 I = K - KK + 1, K, NB
+ IB = MIN( NB, K-I+1 )
+ II = M - K + I
+ IF( II.GT.1 ) THEN
+*
+* Form the triangular factor of the block reflector
+* H = H(i+ib-1) . . . H(i+1) H(i)
+*
+ CALL DLARFT( 'Backward', 'Rowwise', N-K+I+IB-1, IB,
+ $ A( II, 1 ), LDA, TAU( I ), WORK, LDWORK )
+*
+* Apply H' to A(1:m-k+i-1,1:n-k+i+ib-1) from the right
+*
+ CALL DLARFB( 'Right', 'Transpose', 'Backward', 'Rowwise',
+ $ II-1, N-K+I+IB-1, IB, A( II, 1 ), LDA, WORK,
+ $ LDWORK, A, LDA, WORK( IB+1 ), LDWORK )
+ END IF
+*
+* Apply H' to columns 1:n-k+i+ib-1 of current block
+*
+ CALL DORGR2( IB, N-K+I+IB-1, IB, A( II, 1 ), LDA, TAU( I ),
+ $ WORK, IINFO )
+*
+* Set columns n-k+i+ib:n of current block to zero
+*
+ DO 40 L = N - K + I + IB, N
+ DO 30 J = II, II + IB - 1
+ A( J, L ) = ZERO
+ 30 CONTINUE
+ 40 CONTINUE
+ 50 CONTINUE
+ END IF
+*
+ WORK( 1 ) = IWS
+ RETURN
+*
+* End of DORGRQ
+*
+ END