summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dorgr2.f
diff options
context:
space:
mode:
authorSiddhesh Wani2015-05-25 14:46:31 +0530
committerSiddhesh Wani2015-05-25 14:46:31 +0530
commit6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26 (patch)
tree1b7bd89fdcfd01715713d8a15db471dc75a96bbf /2.3-1/src/fortran/lapack/dorgr2.f
downloadScilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.gz
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.bz2
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.zip
Original Version
Diffstat (limited to '2.3-1/src/fortran/lapack/dorgr2.f')
-rw-r--r--2.3-1/src/fortran/lapack/dorgr2.f131
1 files changed, 131 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dorgr2.f b/2.3-1/src/fortran/lapack/dorgr2.f
new file mode 100644
index 00000000..9da45c5f
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dorgr2.f
@@ -0,0 +1,131 @@
+ SUBROUTINE DORGR2( M, N, K, A, LDA, TAU, WORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, K, LDA, M, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DORGR2 generates an m by n real matrix Q with orthonormal rows,
+* which is defined as the last m rows of a product of k elementary
+* reflectors of order n
+*
+* Q = H(1) H(2) . . . H(k)
+*
+* as returned by DGERQF.
+*
+* Arguments
+* =========
+*
+* M (input) INTEGER
+* The number of rows of the matrix Q. M >= 0.
+*
+* N (input) INTEGER
+* The number of columns of the matrix Q. N >= M.
+*
+* K (input) INTEGER
+* The number of elementary reflectors whose product defines the
+* matrix Q. M >= K >= 0.
+*
+* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+* On entry, the (m-k+i)-th row must contain the vector which
+* defines the elementary reflector H(i), for i = 1,2,...,k, as
+* returned by DGERQF in the last k rows of its array argument
+* A.
+* On exit, the m by n matrix Q.
+*
+* LDA (input) INTEGER
+* The first dimension of the array A. LDA >= max(1,M).
+*
+* TAU (input) DOUBLE PRECISION array, dimension (K)
+* TAU(i) must contain the scalar factor of the elementary
+* reflector H(i), as returned by DGERQF.
+*
+* WORK (workspace) DOUBLE PRECISION array, dimension (M)
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument has an illegal value
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE, ZERO
+ PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
+* ..
+* .. Local Scalars ..
+ INTEGER I, II, J, L
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLARF, DSCAL, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ INFO = 0
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.M ) THEN
+ INFO = -2
+ ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -5
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DORGR2', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( M.LE.0 )
+ $ RETURN
+*
+ IF( K.LT.M ) THEN
+*
+* Initialise rows 1:m-k to rows of the unit matrix
+*
+ DO 20 J = 1, N
+ DO 10 L = 1, M - K
+ A( L, J ) = ZERO
+ 10 CONTINUE
+ IF( J.GT.N-M .AND. J.LE.N-K )
+ $ A( M-N+J, J ) = ONE
+ 20 CONTINUE
+ END IF
+*
+ DO 40 I = 1, K
+ II = M - K + I
+*
+* Apply H(i) to A(1:m-k+i,1:n-k+i) from the right
+*
+ A( II, N-M+II ) = ONE
+ CALL DLARF( 'Right', II-1, N-M+II, A( II, 1 ), LDA, TAU( I ),
+ $ A, LDA, WORK )
+ CALL DSCAL( N-M+II-1, -TAU( I ), A( II, 1 ), LDA )
+ A( II, N-M+II ) = ONE - TAU( I )
+*
+* Set A(m-k+i,n-k+i+1:n) to zero
+*
+ DO 30 L = N - M + II + 1, N
+ A( II, L ) = ZERO
+ 30 CONTINUE
+ 40 CONTINUE
+ RETURN
+*
+* End of DORGR2
+*
+ END