summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dlatrs.f
diff options
context:
space:
mode:
authorSiddhesh Wani2015-05-25 14:46:31 +0530
committerSiddhesh Wani2015-05-25 14:46:31 +0530
commit6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26 (patch)
tree1b7bd89fdcfd01715713d8a15db471dc75a96bbf /2.3-1/src/fortran/lapack/dlatrs.f
downloadScilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.gz
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.bz2
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.zip
Original Version
Diffstat (limited to '2.3-1/src/fortran/lapack/dlatrs.f')
-rw-r--r--2.3-1/src/fortran/lapack/dlatrs.f701
1 files changed, 701 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dlatrs.f b/2.3-1/src/fortran/lapack/dlatrs.f
new file mode 100644
index 00000000..bbd3a9e4
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dlatrs.f
@@ -0,0 +1,701 @@
+ SUBROUTINE DLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
+ $ CNORM, INFO )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER DIAG, NORMIN, TRANS, UPLO
+ INTEGER INFO, LDA, N
+ DOUBLE PRECISION SCALE
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), CNORM( * ), X( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DLATRS solves one of the triangular systems
+*
+* A *x = s*b or A'*x = s*b
+*
+* with scaling to prevent overflow. Here A is an upper or lower
+* triangular matrix, A' denotes the transpose of A, x and b are
+* n-element vectors, and s is a scaling factor, usually less than
+* or equal to 1, chosen so that the components of x will be less than
+* the overflow threshold. If the unscaled problem will not cause
+* overflow, the Level 2 BLAS routine DTRSV is called. If the matrix A
+* is singular (A(j,j) = 0 for some j), then s is set to 0 and a
+* non-trivial solution to A*x = 0 is returned.
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* Specifies whether the matrix A is upper or lower triangular.
+* = 'U': Upper triangular
+* = 'L': Lower triangular
+*
+* TRANS (input) CHARACTER*1
+* Specifies the operation applied to A.
+* = 'N': Solve A * x = s*b (No transpose)
+* = 'T': Solve A'* x = s*b (Transpose)
+* = 'C': Solve A'* x = s*b (Conjugate transpose = Transpose)
+*
+* DIAG (input) CHARACTER*1
+* Specifies whether or not the matrix A is unit triangular.
+* = 'N': Non-unit triangular
+* = 'U': Unit triangular
+*
+* NORMIN (input) CHARACTER*1
+* Specifies whether CNORM has been set or not.
+* = 'Y': CNORM contains the column norms on entry
+* = 'N': CNORM is not set on entry. On exit, the norms will
+* be computed and stored in CNORM.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* A (input) DOUBLE PRECISION array, dimension (LDA,N)
+* The triangular matrix A. If UPLO = 'U', the leading n by n
+* upper triangular part of the array A contains the upper
+* triangular matrix, and the strictly lower triangular part of
+* A is not referenced. If UPLO = 'L', the leading n by n lower
+* triangular part of the array A contains the lower triangular
+* matrix, and the strictly upper triangular part of A is not
+* referenced. If DIAG = 'U', the diagonal elements of A are
+* also not referenced and are assumed to be 1.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max (1,N).
+*
+* X (input/output) DOUBLE PRECISION array, dimension (N)
+* On entry, the right hand side b of the triangular system.
+* On exit, X is overwritten by the solution vector x.
+*
+* SCALE (output) DOUBLE PRECISION
+* The scaling factor s for the triangular system
+* A * x = s*b or A'* x = s*b.
+* If SCALE = 0, the matrix A is singular or badly scaled, and
+* the vector x is an exact or approximate solution to A*x = 0.
+*
+* CNORM (input or output) DOUBLE PRECISION array, dimension (N)
+*
+* If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
+* contains the norm of the off-diagonal part of the j-th column
+* of A. If TRANS = 'N', CNORM(j) must be greater than or equal
+* to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
+* must be greater than or equal to the 1-norm.
+*
+* If NORMIN = 'N', CNORM is an output argument and CNORM(j)
+* returns the 1-norm of the offdiagonal part of the j-th column
+* of A.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -k, the k-th argument had an illegal value
+*
+* Further Details
+* ======= =======
+*
+* A rough bound on x is computed; if that is less than overflow, DTRSV
+* is called, otherwise, specific code is used which checks for possible
+* overflow or divide-by-zero at every operation.
+*
+* A columnwise scheme is used for solving A*x = b. The basic algorithm
+* if A is lower triangular is
+*
+* x[1:n] := b[1:n]
+* for j = 1, ..., n
+* x(j) := x(j) / A(j,j)
+* x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
+* end
+*
+* Define bounds on the components of x after j iterations of the loop:
+* M(j) = bound on x[1:j]
+* G(j) = bound on x[j+1:n]
+* Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
+*
+* Then for iteration j+1 we have
+* M(j+1) <= G(j) / | A(j+1,j+1) |
+* G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
+* <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
+*
+* where CNORM(j+1) is greater than or equal to the infinity-norm of
+* column j+1 of A, not counting the diagonal. Hence
+*
+* G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
+* 1<=i<=j
+* and
+*
+* |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
+* 1<=i< j
+*
+* Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTRSV if the
+* reciprocal of the largest M(j), j=1,..,n, is larger than
+* max(underflow, 1/overflow).
+*
+* The bound on x(j) is also used to determine when a step in the
+* columnwise method can be performed without fear of overflow. If
+* the computed bound is greater than a large constant, x is scaled to
+* prevent overflow, but if the bound overflows, x is set to 0, x(j) to
+* 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
+*
+* Similarly, a row-wise scheme is used to solve A'*x = b. The basic
+* algorithm for A upper triangular is
+*
+* for j = 1, ..., n
+* x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
+* end
+*
+* We simultaneously compute two bounds
+* G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
+* M(j) = bound on x(i), 1<=i<=j
+*
+* The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
+* add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
+* Then the bound on x(j) is
+*
+* M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
+*
+* <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
+* 1<=i<=j
+*
+* and we can safely call DTRSV if 1/M(n) and 1/G(n) are both greater
+* than max(underflow, 1/overflow).
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, HALF, ONE
+ PARAMETER ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL NOTRAN, NOUNIT, UPPER
+ INTEGER I, IMAX, J, JFIRST, JINC, JLAST
+ DOUBLE PRECISION BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
+ $ TMAX, TSCAL, USCAL, XBND, XJ, XMAX
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER IDAMAX
+ DOUBLE PRECISION DASUM, DDOT, DLAMCH
+ EXTERNAL LSAME, IDAMAX, DASUM, DDOT, DLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL DAXPY, DSCAL, DTRSV, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+ INFO = 0
+ UPPER = LSAME( UPLO, 'U' )
+ NOTRAN = LSAME( TRANS, 'N' )
+ NOUNIT = LSAME( DIAG, 'N' )
+*
+* Test the input parameters.
+*
+ IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
+ $ LSAME( TRANS, 'C' ) ) THEN
+ INFO = -2
+ ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
+ INFO = -3
+ ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
+ $ LSAME( NORMIN, 'N' ) ) THEN
+ INFO = -4
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -7
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DLATRS', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+* Determine machine dependent parameters to control overflow.
+*
+ SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
+ BIGNUM = ONE / SMLNUM
+ SCALE = ONE
+*
+ IF( LSAME( NORMIN, 'N' ) ) THEN
+*
+* Compute the 1-norm of each column, not including the diagonal.
+*
+ IF( UPPER ) THEN
+*
+* A is upper triangular.
+*
+ DO 10 J = 1, N
+ CNORM( J ) = DASUM( J-1, A( 1, J ), 1 )
+ 10 CONTINUE
+ ELSE
+*
+* A is lower triangular.
+*
+ DO 20 J = 1, N - 1
+ CNORM( J ) = DASUM( N-J, A( J+1, J ), 1 )
+ 20 CONTINUE
+ CNORM( N ) = ZERO
+ END IF
+ END IF
+*
+* Scale the column norms by TSCAL if the maximum element in CNORM is
+* greater than BIGNUM.
+*
+ IMAX = IDAMAX( N, CNORM, 1 )
+ TMAX = CNORM( IMAX )
+ IF( TMAX.LE.BIGNUM ) THEN
+ TSCAL = ONE
+ ELSE
+ TSCAL = ONE / ( SMLNUM*TMAX )
+ CALL DSCAL( N, TSCAL, CNORM, 1 )
+ END IF
+*
+* Compute a bound on the computed solution vector to see if the
+* Level 2 BLAS routine DTRSV can be used.
+*
+ J = IDAMAX( N, X, 1 )
+ XMAX = ABS( X( J ) )
+ XBND = XMAX
+ IF( NOTRAN ) THEN
+*
+* Compute the growth in A * x = b.
+*
+ IF( UPPER ) THEN
+ JFIRST = N
+ JLAST = 1
+ JINC = -1
+ ELSE
+ JFIRST = 1
+ JLAST = N
+ JINC = 1
+ END IF
+*
+ IF( TSCAL.NE.ONE ) THEN
+ GROW = ZERO
+ GO TO 50
+ END IF
+*
+ IF( NOUNIT ) THEN
+*
+* A is non-unit triangular.
+*
+* Compute GROW = 1/G(j) and XBND = 1/M(j).
+* Initially, G(0) = max{x(i), i=1,...,n}.
+*
+ GROW = ONE / MAX( XBND, SMLNUM )
+ XBND = GROW
+ DO 30 J = JFIRST, JLAST, JINC
+*
+* Exit the loop if the growth factor is too small.
+*
+ IF( GROW.LE.SMLNUM )
+ $ GO TO 50
+*
+* M(j) = G(j-1) / abs(A(j,j))
+*
+ TJJ = ABS( A( J, J ) )
+ XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
+ IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
+*
+* G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
+*
+ GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
+ ELSE
+*
+* G(j) could overflow, set GROW to 0.
+*
+ GROW = ZERO
+ END IF
+ 30 CONTINUE
+ GROW = XBND
+ ELSE
+*
+* A is unit triangular.
+*
+* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
+*
+ GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
+ DO 40 J = JFIRST, JLAST, JINC
+*
+* Exit the loop if the growth factor is too small.
+*
+ IF( GROW.LE.SMLNUM )
+ $ GO TO 50
+*
+* G(j) = G(j-1)*( 1 + CNORM(j) )
+*
+ GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
+ 40 CONTINUE
+ END IF
+ 50 CONTINUE
+*
+ ELSE
+*
+* Compute the growth in A' * x = b.
+*
+ IF( UPPER ) THEN
+ JFIRST = 1
+ JLAST = N
+ JINC = 1
+ ELSE
+ JFIRST = N
+ JLAST = 1
+ JINC = -1
+ END IF
+*
+ IF( TSCAL.NE.ONE ) THEN
+ GROW = ZERO
+ GO TO 80
+ END IF
+*
+ IF( NOUNIT ) THEN
+*
+* A is non-unit triangular.
+*
+* Compute GROW = 1/G(j) and XBND = 1/M(j).
+* Initially, M(0) = max{x(i), i=1,...,n}.
+*
+ GROW = ONE / MAX( XBND, SMLNUM )
+ XBND = GROW
+ DO 60 J = JFIRST, JLAST, JINC
+*
+* Exit the loop if the growth factor is too small.
+*
+ IF( GROW.LE.SMLNUM )
+ $ GO TO 80
+*
+* G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
+*
+ XJ = ONE + CNORM( J )
+ GROW = MIN( GROW, XBND / XJ )
+*
+* M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
+*
+ TJJ = ABS( A( J, J ) )
+ IF( XJ.GT.TJJ )
+ $ XBND = XBND*( TJJ / XJ )
+ 60 CONTINUE
+ GROW = MIN( GROW, XBND )
+ ELSE
+*
+* A is unit triangular.
+*
+* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
+*
+ GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
+ DO 70 J = JFIRST, JLAST, JINC
+*
+* Exit the loop if the growth factor is too small.
+*
+ IF( GROW.LE.SMLNUM )
+ $ GO TO 80
+*
+* G(j) = ( 1 + CNORM(j) )*G(j-1)
+*
+ XJ = ONE + CNORM( J )
+ GROW = GROW / XJ
+ 70 CONTINUE
+ END IF
+ 80 CONTINUE
+ END IF
+*
+ IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
+*
+* Use the Level 2 BLAS solve if the reciprocal of the bound on
+* elements of X is not too small.
+*
+ CALL DTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
+ ELSE
+*
+* Use a Level 1 BLAS solve, scaling intermediate results.
+*
+ IF( XMAX.GT.BIGNUM ) THEN
+*
+* Scale X so that its components are less than or equal to
+* BIGNUM in absolute value.
+*
+ SCALE = BIGNUM / XMAX
+ CALL DSCAL( N, SCALE, X, 1 )
+ XMAX = BIGNUM
+ END IF
+*
+ IF( NOTRAN ) THEN
+*
+* Solve A * x = b
+*
+ DO 110 J = JFIRST, JLAST, JINC
+*
+* Compute x(j) = b(j) / A(j,j), scaling x if necessary.
+*
+ XJ = ABS( X( J ) )
+ IF( NOUNIT ) THEN
+ TJJS = A( J, J )*TSCAL
+ ELSE
+ TJJS = TSCAL
+ IF( TSCAL.EQ.ONE )
+ $ GO TO 100
+ END IF
+ TJJ = ABS( TJJS )
+ IF( TJJ.GT.SMLNUM ) THEN
+*
+* abs(A(j,j)) > SMLNUM:
+*
+ IF( TJJ.LT.ONE ) THEN
+ IF( XJ.GT.TJJ*BIGNUM ) THEN
+*
+* Scale x by 1/b(j).
+*
+ REC = ONE / XJ
+ CALL DSCAL( N, REC, X, 1 )
+ SCALE = SCALE*REC
+ XMAX = XMAX*REC
+ END IF
+ END IF
+ X( J ) = X( J ) / TJJS
+ XJ = ABS( X( J ) )
+ ELSE IF( TJJ.GT.ZERO ) THEN
+*
+* 0 < abs(A(j,j)) <= SMLNUM:
+*
+ IF( XJ.GT.TJJ*BIGNUM ) THEN
+*
+* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
+* to avoid overflow when dividing by A(j,j).
+*
+ REC = ( TJJ*BIGNUM ) / XJ
+ IF( CNORM( J ).GT.ONE ) THEN
+*
+* Scale by 1/CNORM(j) to avoid overflow when
+* multiplying x(j) times column j.
+*
+ REC = REC / CNORM( J )
+ END IF
+ CALL DSCAL( N, REC, X, 1 )
+ SCALE = SCALE*REC
+ XMAX = XMAX*REC
+ END IF
+ X( J ) = X( J ) / TJJS
+ XJ = ABS( X( J ) )
+ ELSE
+*
+* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
+* scale = 0, and compute a solution to A*x = 0.
+*
+ DO 90 I = 1, N
+ X( I ) = ZERO
+ 90 CONTINUE
+ X( J ) = ONE
+ XJ = ONE
+ SCALE = ZERO
+ XMAX = ZERO
+ END IF
+ 100 CONTINUE
+*
+* Scale x if necessary to avoid overflow when adding a
+* multiple of column j of A.
+*
+ IF( XJ.GT.ONE ) THEN
+ REC = ONE / XJ
+ IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
+*
+* Scale x by 1/(2*abs(x(j))).
+*
+ REC = REC*HALF
+ CALL DSCAL( N, REC, X, 1 )
+ SCALE = SCALE*REC
+ END IF
+ ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
+*
+* Scale x by 1/2.
+*
+ CALL DSCAL( N, HALF, X, 1 )
+ SCALE = SCALE*HALF
+ END IF
+*
+ IF( UPPER ) THEN
+ IF( J.GT.1 ) THEN
+*
+* Compute the update
+* x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
+*
+ CALL DAXPY( J-1, -X( J )*TSCAL, A( 1, J ), 1, X,
+ $ 1 )
+ I = IDAMAX( J-1, X, 1 )
+ XMAX = ABS( X( I ) )
+ END IF
+ ELSE
+ IF( J.LT.N ) THEN
+*
+* Compute the update
+* x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
+*
+ CALL DAXPY( N-J, -X( J )*TSCAL, A( J+1, J ), 1,
+ $ X( J+1 ), 1 )
+ I = J + IDAMAX( N-J, X( J+1 ), 1 )
+ XMAX = ABS( X( I ) )
+ END IF
+ END IF
+ 110 CONTINUE
+*
+ ELSE
+*
+* Solve A' * x = b
+*
+ DO 160 J = JFIRST, JLAST, JINC
+*
+* Compute x(j) = b(j) - sum A(k,j)*x(k).
+* k<>j
+*
+ XJ = ABS( X( J ) )
+ USCAL = TSCAL
+ REC = ONE / MAX( XMAX, ONE )
+ IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
+*
+* If x(j) could overflow, scale x by 1/(2*XMAX).
+*
+ REC = REC*HALF
+ IF( NOUNIT ) THEN
+ TJJS = A( J, J )*TSCAL
+ ELSE
+ TJJS = TSCAL
+ END IF
+ TJJ = ABS( TJJS )
+ IF( TJJ.GT.ONE ) THEN
+*
+* Divide by A(j,j) when scaling x if A(j,j) > 1.
+*
+ REC = MIN( ONE, REC*TJJ )
+ USCAL = USCAL / TJJS
+ END IF
+ IF( REC.LT.ONE ) THEN
+ CALL DSCAL( N, REC, X, 1 )
+ SCALE = SCALE*REC
+ XMAX = XMAX*REC
+ END IF
+ END IF
+*
+ SUMJ = ZERO
+ IF( USCAL.EQ.ONE ) THEN
+*
+* If the scaling needed for A in the dot product is 1,
+* call DDOT to perform the dot product.
+*
+ IF( UPPER ) THEN
+ SUMJ = DDOT( J-1, A( 1, J ), 1, X, 1 )
+ ELSE IF( J.LT.N ) THEN
+ SUMJ = DDOT( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
+ END IF
+ ELSE
+*
+* Otherwise, use in-line code for the dot product.
+*
+ IF( UPPER ) THEN
+ DO 120 I = 1, J - 1
+ SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
+ 120 CONTINUE
+ ELSE IF( J.LT.N ) THEN
+ DO 130 I = J + 1, N
+ SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
+ 130 CONTINUE
+ END IF
+ END IF
+*
+ IF( USCAL.EQ.TSCAL ) THEN
+*
+* Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
+* was not used to scale the dotproduct.
+*
+ X( J ) = X( J ) - SUMJ
+ XJ = ABS( X( J ) )
+ IF( NOUNIT ) THEN
+ TJJS = A( J, J )*TSCAL
+ ELSE
+ TJJS = TSCAL
+ IF( TSCAL.EQ.ONE )
+ $ GO TO 150
+ END IF
+*
+* Compute x(j) = x(j) / A(j,j), scaling if necessary.
+*
+ TJJ = ABS( TJJS )
+ IF( TJJ.GT.SMLNUM ) THEN
+*
+* abs(A(j,j)) > SMLNUM:
+*
+ IF( TJJ.LT.ONE ) THEN
+ IF( XJ.GT.TJJ*BIGNUM ) THEN
+*
+* Scale X by 1/abs(x(j)).
+*
+ REC = ONE / XJ
+ CALL DSCAL( N, REC, X, 1 )
+ SCALE = SCALE*REC
+ XMAX = XMAX*REC
+ END IF
+ END IF
+ X( J ) = X( J ) / TJJS
+ ELSE IF( TJJ.GT.ZERO ) THEN
+*
+* 0 < abs(A(j,j)) <= SMLNUM:
+*
+ IF( XJ.GT.TJJ*BIGNUM ) THEN
+*
+* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
+*
+ REC = ( TJJ*BIGNUM ) / XJ
+ CALL DSCAL( N, REC, X, 1 )
+ SCALE = SCALE*REC
+ XMAX = XMAX*REC
+ END IF
+ X( J ) = X( J ) / TJJS
+ ELSE
+*
+* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
+* scale = 0, and compute a solution to A'*x = 0.
+*
+ DO 140 I = 1, N
+ X( I ) = ZERO
+ 140 CONTINUE
+ X( J ) = ONE
+ SCALE = ZERO
+ XMAX = ZERO
+ END IF
+ 150 CONTINUE
+ ELSE
+*
+* Compute x(j) := x(j) / A(j,j) - sumj if the dot
+* product has already been divided by 1/A(j,j).
+*
+ X( J ) = X( J ) / TJJS - SUMJ
+ END IF
+ XMAX = MAX( XMAX, ABS( X( J ) ) )
+ 160 CONTINUE
+ END IF
+ SCALE = SCALE / TSCAL
+ END IF
+*
+* Scale the column norms by 1/TSCAL for return.
+*
+ IF( TSCAL.NE.ONE ) THEN
+ CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
+ END IF
+*
+ RETURN
+*
+* End of DLATRS
+*
+ END