summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dlasq4.f
diff options
context:
space:
mode:
authorSandeep Gupta2017-06-18 23:55:40 +0530
committerSandeep Gupta2017-06-18 23:55:40 +0530
commitb43eccd4cffed5bd1017c5821524fb6e49202f78 (patch)
tree4c53d798252cbeae9bcf7dc9604524b20bb10f27 /2.3-1/src/fortran/lapack/dlasq4.f
downloadScilab2C-b43eccd4cffed5bd1017c5821524fb6e49202f78.tar.gz
Scilab2C-b43eccd4cffed5bd1017c5821524fb6e49202f78.tar.bz2
Scilab2C-b43eccd4cffed5bd1017c5821524fb6e49202f78.zip
First commit
Diffstat (limited to '2.3-1/src/fortran/lapack/dlasq4.f')
-rw-r--r--2.3-1/src/fortran/lapack/dlasq4.f329
1 files changed, 329 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dlasq4.f b/2.3-1/src/fortran/lapack/dlasq4.f
new file mode 100644
index 00000000..db2b6fe5
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dlasq4.f
@@ -0,0 +1,329 @@
+ SUBROUTINE DLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN,
+ $ DN1, DN2, TAU, TTYPE )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER I0, N0, N0IN, PP, TTYPE
+ DOUBLE PRECISION DMIN, DMIN1, DMIN2, DN, DN1, DN2, TAU
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION Z( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DLASQ4 computes an approximation TAU to the smallest eigenvalue
+* using values of d from the previous transform.
+*
+* I0 (input) INTEGER
+* First index.
+*
+* N0 (input) INTEGER
+* Last index.
+*
+* Z (input) DOUBLE PRECISION array, dimension ( 4*N )
+* Z holds the qd array.
+*
+* PP (input) INTEGER
+* PP=0 for ping, PP=1 for pong.
+*
+* N0IN (input) INTEGER
+* The value of N0 at start of EIGTEST.
+*
+* DMIN (input) DOUBLE PRECISION
+* Minimum value of d.
+*
+* DMIN1 (input) DOUBLE PRECISION
+* Minimum value of d, excluding D( N0 ).
+*
+* DMIN2 (input) DOUBLE PRECISION
+* Minimum value of d, excluding D( N0 ) and D( N0-1 ).
+*
+* DN (input) DOUBLE PRECISION
+* d(N)
+*
+* DN1 (input) DOUBLE PRECISION
+* d(N-1)
+*
+* DN2 (input) DOUBLE PRECISION
+* d(N-2)
+*
+* TAU (output) DOUBLE PRECISION
+* This is the shift.
+*
+* TTYPE (output) INTEGER
+* Shift type.
+*
+* Further Details
+* ===============
+* CNST1 = 9/16
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION CNST1, CNST2, CNST3
+ PARAMETER ( CNST1 = 0.5630D0, CNST2 = 1.010D0,
+ $ CNST3 = 1.050D0 )
+ DOUBLE PRECISION QURTR, THIRD, HALF, ZERO, ONE, TWO, HUNDRD
+ PARAMETER ( QURTR = 0.250D0, THIRD = 0.3330D0,
+ $ HALF = 0.50D0, ZERO = 0.0D0, ONE = 1.0D0,
+ $ TWO = 2.0D0, HUNDRD = 100.0D0 )
+* ..
+* .. Local Scalars ..
+ INTEGER I4, NN, NP
+ DOUBLE PRECISION A2, B1, B2, G, GAM, GAP1, GAP2, S
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN, SQRT
+* ..
+* .. Save statement ..
+ SAVE G
+* ..
+* .. Data statement ..
+ DATA G / ZERO /
+* ..
+* .. Executable Statements ..
+*
+* A negative DMIN forces the shift to take that absolute value
+* TTYPE records the type of shift.
+*
+ IF( DMIN.LE.ZERO ) THEN
+ TAU = -DMIN
+ TTYPE = -1
+ RETURN
+ END IF
+*
+ NN = 4*N0 + PP
+ IF( N0IN.EQ.N0 ) THEN
+*
+* No eigenvalues deflated.
+*
+ IF( DMIN.EQ.DN .OR. DMIN.EQ.DN1 ) THEN
+*
+ B1 = SQRT( Z( NN-3 ) )*SQRT( Z( NN-5 ) )
+ B2 = SQRT( Z( NN-7 ) )*SQRT( Z( NN-9 ) )
+ A2 = Z( NN-7 ) + Z( NN-5 )
+*
+* Cases 2 and 3.
+*
+ IF( DMIN.EQ.DN .AND. DMIN1.EQ.DN1 ) THEN
+ GAP2 = DMIN2 - A2 - DMIN2*QURTR
+ IF( GAP2.GT.ZERO .AND. GAP2.GT.B2 ) THEN
+ GAP1 = A2 - DN - ( B2 / GAP2 )*B2
+ ELSE
+ GAP1 = A2 - DN - ( B1+B2 )
+ END IF
+ IF( GAP1.GT.ZERO .AND. GAP1.GT.B1 ) THEN
+ S = MAX( DN-( B1 / GAP1 )*B1, HALF*DMIN )
+ TTYPE = -2
+ ELSE
+ S = ZERO
+ IF( DN.GT.B1 )
+ $ S = DN - B1
+ IF( A2.GT.( B1+B2 ) )
+ $ S = MIN( S, A2-( B1+B2 ) )
+ S = MAX( S, THIRD*DMIN )
+ TTYPE = -3
+ END IF
+ ELSE
+*
+* Case 4.
+*
+ TTYPE = -4
+ S = QURTR*DMIN
+ IF( DMIN.EQ.DN ) THEN
+ GAM = DN
+ A2 = ZERO
+ IF( Z( NN-5 ) .GT. Z( NN-7 ) )
+ $ RETURN
+ B2 = Z( NN-5 ) / Z( NN-7 )
+ NP = NN - 9
+ ELSE
+ NP = NN - 2*PP
+ B2 = Z( NP-2 )
+ GAM = DN1
+ IF( Z( NP-4 ) .GT. Z( NP-2 ) )
+ $ RETURN
+ A2 = Z( NP-4 ) / Z( NP-2 )
+ IF( Z( NN-9 ) .GT. Z( NN-11 ) )
+ $ RETURN
+ B2 = Z( NN-9 ) / Z( NN-11 )
+ NP = NN - 13
+ END IF
+*
+* Approximate contribution to norm squared from I < NN-1.
+*
+ A2 = A2 + B2
+ DO 10 I4 = NP, 4*I0 - 1 + PP, -4
+ IF( B2.EQ.ZERO )
+ $ GO TO 20
+ B1 = B2
+ IF( Z( I4 ) .GT. Z( I4-2 ) )
+ $ RETURN
+ B2 = B2*( Z( I4 ) / Z( I4-2 ) )
+ A2 = A2 + B2
+ IF( HUNDRD*MAX( B2, B1 ).LT.A2 .OR. CNST1.LT.A2 )
+ $ GO TO 20
+ 10 CONTINUE
+ 20 CONTINUE
+ A2 = CNST3*A2
+*
+* Rayleigh quotient residual bound.
+*
+ IF( A2.LT.CNST1 )
+ $ S = GAM*( ONE-SQRT( A2 ) ) / ( ONE+A2 )
+ END IF
+ ELSE IF( DMIN.EQ.DN2 ) THEN
+*
+* Case 5.
+*
+ TTYPE = -5
+ S = QURTR*DMIN
+*
+* Compute contribution to norm squared from I > NN-2.
+*
+ NP = NN - 2*PP
+ B1 = Z( NP-2 )
+ B2 = Z( NP-6 )
+ GAM = DN2
+ IF( Z( NP-8 ).GT.B2 .OR. Z( NP-4 ).GT.B1 )
+ $ RETURN
+ A2 = ( Z( NP-8 ) / B2 )*( ONE+Z( NP-4 ) / B1 )
+*
+* Approximate contribution to norm squared from I < NN-2.
+*
+ IF( N0-I0.GT.2 ) THEN
+ B2 = Z( NN-13 ) / Z( NN-15 )
+ A2 = A2 + B2
+ DO 30 I4 = NN - 17, 4*I0 - 1 + PP, -4
+ IF( B2.EQ.ZERO )
+ $ GO TO 40
+ B1 = B2
+ IF( Z( I4 ) .GT. Z( I4-2 ) )
+ $ RETURN
+ B2 = B2*( Z( I4 ) / Z( I4-2 ) )
+ A2 = A2 + B2
+ IF( HUNDRD*MAX( B2, B1 ).LT.A2 .OR. CNST1.LT.A2 )
+ $ GO TO 40
+ 30 CONTINUE
+ 40 CONTINUE
+ A2 = CNST3*A2
+ END IF
+*
+ IF( A2.LT.CNST1 )
+ $ S = GAM*( ONE-SQRT( A2 ) ) / ( ONE+A2 )
+ ELSE
+*
+* Case 6, no information to guide us.
+*
+ IF( TTYPE.EQ.-6 ) THEN
+ G = G + THIRD*( ONE-G )
+ ELSE IF( TTYPE.EQ.-18 ) THEN
+ G = QURTR*THIRD
+ ELSE
+ G = QURTR
+ END IF
+ S = G*DMIN
+ TTYPE = -6
+ END IF
+*
+ ELSE IF( N0IN.EQ.( N0+1 ) ) THEN
+*
+* One eigenvalue just deflated. Use DMIN1, DN1 for DMIN and DN.
+*
+ IF( DMIN1.EQ.DN1 .AND. DMIN2.EQ.DN2 ) THEN
+*
+* Cases 7 and 8.
+*
+ TTYPE = -7
+ S = THIRD*DMIN1
+ IF( Z( NN-5 ).GT.Z( NN-7 ) )
+ $ RETURN
+ B1 = Z( NN-5 ) / Z( NN-7 )
+ B2 = B1
+ IF( B2.EQ.ZERO )
+ $ GO TO 60
+ DO 50 I4 = 4*N0 - 9 + PP, 4*I0 - 1 + PP, -4
+ A2 = B1
+ IF( Z( I4 ).GT.Z( I4-2 ) )
+ $ RETURN
+ B1 = B1*( Z( I4 ) / Z( I4-2 ) )
+ B2 = B2 + B1
+ IF( HUNDRD*MAX( B1, A2 ).LT.B2 )
+ $ GO TO 60
+ 50 CONTINUE
+ 60 CONTINUE
+ B2 = SQRT( CNST3*B2 )
+ A2 = DMIN1 / ( ONE+B2**2 )
+ GAP2 = HALF*DMIN2 - A2
+ IF( GAP2.GT.ZERO .AND. GAP2.GT.B2*A2 ) THEN
+ S = MAX( S, A2*( ONE-CNST2*A2*( B2 / GAP2 )*B2 ) )
+ ELSE
+ S = MAX( S, A2*( ONE-CNST2*B2 ) )
+ TTYPE = -8
+ END IF
+ ELSE
+*
+* Case 9.
+*
+ S = QURTR*DMIN1
+ IF( DMIN1.EQ.DN1 )
+ $ S = HALF*DMIN1
+ TTYPE = -9
+ END IF
+*
+ ELSE IF( N0IN.EQ.( N0+2 ) ) THEN
+*
+* Two eigenvalues deflated. Use DMIN2, DN2 for DMIN and DN.
+*
+* Cases 10 and 11.
+*
+ IF( DMIN2.EQ.DN2 .AND. TWO*Z( NN-5 ).LT.Z( NN-7 ) ) THEN
+ TTYPE = -10
+ S = THIRD*DMIN2
+ IF( Z( NN-5 ).GT.Z( NN-7 ) )
+ $ RETURN
+ B1 = Z( NN-5 ) / Z( NN-7 )
+ B2 = B1
+ IF( B2.EQ.ZERO )
+ $ GO TO 80
+ DO 70 I4 = 4*N0 - 9 + PP, 4*I0 - 1 + PP, -4
+ IF( Z( I4 ).GT.Z( I4-2 ) )
+ $ RETURN
+ B1 = B1*( Z( I4 ) / Z( I4-2 ) )
+ B2 = B2 + B1
+ IF( HUNDRD*B1.LT.B2 )
+ $ GO TO 80
+ 70 CONTINUE
+ 80 CONTINUE
+ B2 = SQRT( CNST3*B2 )
+ A2 = DMIN2 / ( ONE+B2**2 )
+ GAP2 = Z( NN-7 ) + Z( NN-9 ) -
+ $ SQRT( Z( NN-11 ) )*SQRT( Z( NN-9 ) ) - A2
+ IF( GAP2.GT.ZERO .AND. GAP2.GT.B2*A2 ) THEN
+ S = MAX( S, A2*( ONE-CNST2*A2*( B2 / GAP2 )*B2 ) )
+ ELSE
+ S = MAX( S, A2*( ONE-CNST2*B2 ) )
+ END IF
+ ELSE
+ S = QURTR*DMIN2
+ TTYPE = -11
+ END IF
+ ELSE IF( N0IN.GT.( N0+2 ) ) THEN
+*
+* Case 12, more than two eigenvalues deflated. No information.
+*
+ S = ZERO
+ TTYPE = -12
+ END IF
+*
+ TAU = S
+ RETURN
+*
+* End of DLASQ4
+*
+ END