summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dlarz.f
diff options
context:
space:
mode:
authorAnkit Raj2017-06-21 10:26:59 +0530
committerAnkit Raj2017-06-21 10:26:59 +0530
commita555820564d9f2e95ca8c97871339d3a5a2081c3 (patch)
treeadb074b66a8e6750209880e6932305ce0a94c8bf /2.3-1/src/fortran/lapack/dlarz.f
downloadScilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.gz
Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.bz2
Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.zip
Updated Scilab2C
Diffstat (limited to '2.3-1/src/fortran/lapack/dlarz.f')
-rw-r--r--2.3-1/src/fortran/lapack/dlarz.f152
1 files changed, 152 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dlarz.f b/2.3-1/src/fortran/lapack/dlarz.f
new file mode 100644
index 00000000..b302fdc2
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dlarz.f
@@ -0,0 +1,152 @@
+ SUBROUTINE DLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER SIDE
+ INTEGER INCV, L, LDC, M, N
+ DOUBLE PRECISION TAU
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION C( LDC, * ), V( * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DLARZ applies a real elementary reflector H to a real M-by-N
+* matrix C, from either the left or the right. H is represented in the
+* form
+*
+* H = I - tau * v * v'
+*
+* where tau is a real scalar and v is a real vector.
+*
+* If tau = 0, then H is taken to be the unit matrix.
+*
+*
+* H is a product of k elementary reflectors as returned by DTZRZF.
+*
+* Arguments
+* =========
+*
+* SIDE (input) CHARACTER*1
+* = 'L': form H * C
+* = 'R': form C * H
+*
+* M (input) INTEGER
+* The number of rows of the matrix C.
+*
+* N (input) INTEGER
+* The number of columns of the matrix C.
+*
+* L (input) INTEGER
+* The number of entries of the vector V containing
+* the meaningful part of the Householder vectors.
+* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
+*
+* V (input) DOUBLE PRECISION array, dimension (1+(L-1)*abs(INCV))
+* The vector v in the representation of H as returned by
+* DTZRZF. V is not used if TAU = 0.
+*
+* INCV (input) INTEGER
+* The increment between elements of v. INCV <> 0.
+*
+* TAU (input) DOUBLE PRECISION
+* The value tau in the representation of H.
+*
+* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
+* On entry, the M-by-N matrix C.
+* On exit, C is overwritten by the matrix H * C if SIDE = 'L',
+* or C * H if SIDE = 'R'.
+*
+* LDC (input) INTEGER
+* The leading dimension of the array C. LDC >= max(1,M).
+*
+* WORK (workspace) DOUBLE PRECISION array, dimension
+* (N) if SIDE = 'L'
+* or (M) if SIDE = 'R'
+*
+* Further Details
+* ===============
+*
+* Based on contributions by
+* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE, ZERO
+ PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
+* ..
+* .. External Subroutines ..
+ EXTERNAL DAXPY, DCOPY, DGEMV, DGER
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. Executable Statements ..
+*
+ IF( LSAME( SIDE, 'L' ) ) THEN
+*
+* Form H * C
+*
+ IF( TAU.NE.ZERO ) THEN
+*
+* w( 1:n ) = C( 1, 1:n )
+*
+ CALL DCOPY( N, C, LDC, WORK, 1 )
+*
+* w( 1:n ) = w( 1:n ) + C( m-l+1:m, 1:n )' * v( 1:l )
+*
+ CALL DGEMV( 'Transpose', L, N, ONE, C( M-L+1, 1 ), LDC, V,
+ $ INCV, ONE, WORK, 1 )
+*
+* C( 1, 1:n ) = C( 1, 1:n ) - tau * w( 1:n )
+*
+ CALL DAXPY( N, -TAU, WORK, 1, C, LDC )
+*
+* C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
+* tau * v( 1:l ) * w( 1:n )'
+*
+ CALL DGER( L, N, -TAU, V, INCV, WORK, 1, C( M-L+1, 1 ),
+ $ LDC )
+ END IF
+*
+ ELSE
+*
+* Form C * H
+*
+ IF( TAU.NE.ZERO ) THEN
+*
+* w( 1:m ) = C( 1:m, 1 )
+*
+ CALL DCOPY( M, C, 1, WORK, 1 )
+*
+* w( 1:m ) = w( 1:m ) + C( 1:m, n-l+1:n, 1:n ) * v( 1:l )
+*
+ CALL DGEMV( 'No transpose', M, L, ONE, C( 1, N-L+1 ), LDC,
+ $ V, INCV, ONE, WORK, 1 )
+*
+* C( 1:m, 1 ) = C( 1:m, 1 ) - tau * w( 1:m )
+*
+ CALL DAXPY( M, -TAU, WORK, 1, C, 1 )
+*
+* C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
+* tau * w( 1:m ) * v( 1:l )'
+*
+ CALL DGER( M, L, -TAU, WORK, 1, V, INCV, C( 1, N-L+1 ),
+ $ LDC )
+*
+ END IF
+*
+ END IF
+*
+ RETURN
+*
+* End of DLARZ
+*
+ END