diff options
author | Siddhesh Wani | 2015-05-25 14:46:31 +0530 |
---|---|---|
committer | Siddhesh Wani | 2015-05-25 14:46:31 +0530 |
commit | 6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26 (patch) | |
tree | 1b7bd89fdcfd01715713d8a15db471dc75a96bbf /2.3-1/src/fortran/lapack/dlaqr2.f | |
download | Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.gz Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.bz2 Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.zip |
Original Version
Diffstat (limited to '2.3-1/src/fortran/lapack/dlaqr2.f')
-rw-r--r-- | 2.3-1/src/fortran/lapack/dlaqr2.f | 551 |
1 files changed, 551 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dlaqr2.f b/2.3-1/src/fortran/lapack/dlaqr2.f new file mode 100644 index 00000000..6ddb3309 --- /dev/null +++ b/2.3-1/src/fortran/lapack/dlaqr2.f @@ -0,0 +1,551 @@ + SUBROUTINE DLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ, + $ IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T, + $ LDT, NV, WV, LDWV, WORK, LWORK ) +* +* -- LAPACK auxiliary routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV, + $ LDZ, LWORK, N, ND, NH, NS, NV, NW + LOGICAL WANTT, WANTZ +* .. +* .. Array Arguments .. + DOUBLE PRECISION H( LDH, * ), SI( * ), SR( * ), T( LDT, * ), + $ V( LDV, * ), WORK( * ), WV( LDWV, * ), + $ Z( LDZ, * ) +* .. +* +* This subroutine is identical to DLAQR3 except that it avoids +* recursion by calling DLAHQR instead of DLAQR4. +* +* +* ****************************************************************** +* Aggressive early deflation: +* +* This subroutine accepts as input an upper Hessenberg matrix +* H and performs an orthogonal similarity transformation +* designed to detect and deflate fully converged eigenvalues from +* a trailing principal submatrix. On output H has been over- +* written by a new Hessenberg matrix that is a perturbation of +* an orthogonal similarity transformation of H. It is to be +* hoped that the final version of H has many zero subdiagonal +* entries. +* +* ****************************************************************** +* WANTT (input) LOGICAL +* If .TRUE., then the Hessenberg matrix H is fully updated +* so that the quasi-triangular Schur factor may be +* computed (in cooperation with the calling subroutine). +* If .FALSE., then only enough of H is updated to preserve +* the eigenvalues. +* +* WANTZ (input) LOGICAL +* If .TRUE., then the orthogonal matrix Z is updated so +* so that the orthogonal Schur factor may be computed +* (in cooperation with the calling subroutine). +* If .FALSE., then Z is not referenced. +* +* N (input) INTEGER +* The order of the matrix H and (if WANTZ is .TRUE.) the +* order of the orthogonal matrix Z. +* +* KTOP (input) INTEGER +* It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. +* KBOT and KTOP together determine an isolated block +* along the diagonal of the Hessenberg matrix. +* +* KBOT (input) INTEGER +* It is assumed without a check that either +* KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together +* determine an isolated block along the diagonal of the +* Hessenberg matrix. +* +* NW (input) INTEGER +* Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1). +* +* H (input/output) DOUBLE PRECISION array, dimension (LDH,N) +* On input the initial N-by-N section of H stores the +* Hessenberg matrix undergoing aggressive early deflation. +* On output H has been transformed by an orthogonal +* similarity transformation, perturbed, and the returned +* to Hessenberg form that (it is to be hoped) has some +* zero subdiagonal entries. +* +* LDH (input) integer +* Leading dimension of H just as declared in the calling +* subroutine. N .LE. LDH +* +* ILOZ (input) INTEGER +* IHIZ (input) INTEGER +* Specify the rows of Z to which transformations must be +* applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N. +* +* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,IHI) +* IF WANTZ is .TRUE., then on output, the orthogonal +* similarity transformation mentioned above has been +* accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right. +* If WANTZ is .FALSE., then Z is unreferenced. +* +* LDZ (input) integer +* The leading dimension of Z just as declared in the +* calling subroutine. 1 .LE. LDZ. +* +* NS (output) integer +* The number of unconverged (ie approximate) eigenvalues +* returned in SR and SI that may be used as shifts by the +* calling subroutine. +* +* ND (output) integer +* The number of converged eigenvalues uncovered by this +* subroutine. +* +* SR (output) DOUBLE PRECISION array, dimension KBOT +* SI (output) DOUBLE PRECISION array, dimension KBOT +* On output, the real and imaginary parts of approximate +* eigenvalues that may be used for shifts are stored in +* SR(KBOT-ND-NS+1) through SR(KBOT-ND) and +* SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively. +* The real and imaginary parts of converged eigenvalues +* are stored in SR(KBOT-ND+1) through SR(KBOT) and +* SI(KBOT-ND+1) through SI(KBOT), respectively. +* +* V (workspace) DOUBLE PRECISION array, dimension (LDV,NW) +* An NW-by-NW work array. +* +* LDV (input) integer scalar +* The leading dimension of V just as declared in the +* calling subroutine. NW .LE. LDV +* +* NH (input) integer scalar +* The number of columns of T. NH.GE.NW. +* +* T (workspace) DOUBLE PRECISION array, dimension (LDT,NW) +* +* LDT (input) integer +* The leading dimension of T just as declared in the +* calling subroutine. NW .LE. LDT +* +* NV (input) integer +* The number of rows of work array WV available for +* workspace. NV.GE.NW. +* +* WV (workspace) DOUBLE PRECISION array, dimension (LDWV,NW) +* +* LDWV (input) integer +* The leading dimension of W just as declared in the +* calling subroutine. NW .LE. LDV +* +* WORK (workspace) DOUBLE PRECISION array, dimension LWORK. +* On exit, WORK(1) is set to an estimate of the optimal value +* of LWORK for the given values of N, NW, KTOP and KBOT. +* +* LWORK (input) integer +* The dimension of the work array WORK. LWORK = 2*NW +* suffices, but greater efficiency may result from larger +* values of LWORK. +* +* If LWORK = -1, then a workspace query is assumed; DLAQR2 +* only estimates the optimal workspace size for the given +* values of N, NW, KTOP and KBOT. The estimate is returned +* in WORK(1). No error message related to LWORK is issued +* by XERBLA. Neither H nor Z are accessed. +* +* ================================================================ +* Based on contributions by +* Karen Braman and Ralph Byers, Department of Mathematics, +* University of Kansas, USA +* +* ================================================================ +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE + PARAMETER ( ZERO = 0.0d0, ONE = 1.0d0 ) +* .. +* .. Local Scalars .. + DOUBLE PRECISION AA, BB, BETA, CC, CS, DD, EVI, EVK, FOO, S, + $ SAFMAX, SAFMIN, SMLNUM, SN, TAU, ULP + INTEGER I, IFST, ILST, INFO, INFQR, J, JW, K, KCOL, + $ KEND, KLN, KROW, KWTOP, LTOP, LWK1, LWK2, + $ LWKOPT + LOGICAL BULGE, SORTED +* .. +* .. External Functions .. + DOUBLE PRECISION DLAMCH + EXTERNAL DLAMCH +* .. +* .. External Subroutines .. + EXTERNAL DCOPY, DGEHRD, DGEMM, DLABAD, DLACPY, DLAHQR, + $ DLANV2, DLARF, DLARFG, DLASET, DORGHR, DTREXC +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, DBLE, INT, MAX, MIN, SQRT +* .. +* .. Executable Statements .. +* +* ==== Estimate optimal workspace. ==== +* + JW = MIN( NW, KBOT-KTOP+1 ) + IF( JW.LE.2 ) THEN + LWKOPT = 1 + ELSE +* +* ==== Workspace query call to DGEHRD ==== +* + CALL DGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO ) + LWK1 = INT( WORK( 1 ) ) +* +* ==== Workspace query call to DORGHR ==== +* + CALL DORGHR( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO ) + LWK2 = INT( WORK( 1 ) ) +* +* ==== Optimal workspace ==== +* + LWKOPT = JW + MAX( LWK1, LWK2 ) + END IF +* +* ==== Quick return in case of workspace query. ==== +* + IF( LWORK.EQ.-1 ) THEN + WORK( 1 ) = DBLE( LWKOPT ) + RETURN + END IF +* +* ==== Nothing to do ... +* ... for an empty active block ... ==== + NS = 0 + ND = 0 + IF( KTOP.GT.KBOT ) + $ RETURN +* ... nor for an empty deflation window. ==== + IF( NW.LT.1 ) + $ RETURN +* +* ==== Machine constants ==== +* + SAFMIN = DLAMCH( 'SAFE MINIMUM' ) + SAFMAX = ONE / SAFMIN + CALL DLABAD( SAFMIN, SAFMAX ) + ULP = DLAMCH( 'PRECISION' ) + SMLNUM = SAFMIN*( DBLE( N ) / ULP ) +* +* ==== Setup deflation window ==== +* + JW = MIN( NW, KBOT-KTOP+1 ) + KWTOP = KBOT - JW + 1 + IF( KWTOP.EQ.KTOP ) THEN + S = ZERO + ELSE + S = H( KWTOP, KWTOP-1 ) + END IF +* + IF( KBOT.EQ.KWTOP ) THEN +* +* ==== 1-by-1 deflation window: not much to do ==== +* + SR( KWTOP ) = H( KWTOP, KWTOP ) + SI( KWTOP ) = ZERO + NS = 1 + ND = 0 + IF( ABS( S ).LE.MAX( SMLNUM, ULP*ABS( H( KWTOP, KWTOP ) ) ) ) + $ THEN + NS = 0 + ND = 1 + IF( KWTOP.GT.KTOP ) + $ H( KWTOP, KWTOP-1 ) = ZERO + END IF + RETURN + END IF +* +* ==== Convert to spike-triangular form. (In case of a +* . rare QR failure, this routine continues to do +* . aggressive early deflation using that part of +* . the deflation window that converged using INFQR +* . here and there to keep track.) ==== +* + CALL DLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT ) + CALL DCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 ) +* + CALL DLASET( 'A', JW, JW, ZERO, ONE, V, LDV ) + CALL DLAHQR( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ), + $ SI( KWTOP ), 1, JW, V, LDV, INFQR ) +* +* ==== DTREXC needs a clean margin near the diagonal ==== +* + DO 10 J = 1, JW - 3 + T( J+2, J ) = ZERO + T( J+3, J ) = ZERO + 10 CONTINUE + IF( JW.GT.2 ) + $ T( JW, JW-2 ) = ZERO +* +* ==== Deflation detection loop ==== +* + NS = JW + ILST = INFQR + 1 + 20 CONTINUE + IF( ILST.LE.NS ) THEN + IF( NS.EQ.1 ) THEN + BULGE = .FALSE. + ELSE + BULGE = T( NS, NS-1 ).NE.ZERO + END IF +* +* ==== Small spike tip test for deflation ==== +* + IF( .NOT.BULGE ) THEN +* +* ==== Real eigenvalue ==== +* + FOO = ABS( T( NS, NS ) ) + IF( FOO.EQ.ZERO ) + $ FOO = ABS( S ) + IF( ABS( S*V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) ) THEN +* +* ==== Deflatable ==== +* + NS = NS - 1 + ELSE +* +* ==== Undeflatable. Move it up out of the way. +* . (DTREXC can not fail in this case.) ==== +* + IFST = NS + CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK, + $ INFO ) + ILST = ILST + 1 + END IF + ELSE +* +* ==== Complex conjugate pair ==== +* + FOO = ABS( T( NS, NS ) ) + SQRT( ABS( T( NS, NS-1 ) ) )* + $ SQRT( ABS( T( NS-1, NS ) ) ) + IF( FOO.EQ.ZERO ) + $ FOO = ABS( S ) + IF( MAX( ABS( S*V( 1, NS ) ), ABS( S*V( 1, NS-1 ) ) ).LE. + $ MAX( SMLNUM, ULP*FOO ) ) THEN +* +* ==== Deflatable ==== +* + NS = NS - 2 + ELSE +* +* ==== Undflatable. Move them up out of the way. +* . Fortunately, DTREXC does the right thing with +* . ILST in case of a rare exchange failure. ==== +* + IFST = NS + CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK, + $ INFO ) + ILST = ILST + 2 + END IF + END IF +* +* ==== End deflation detection loop ==== +* + GO TO 20 + END IF +* +* ==== Return to Hessenberg form ==== +* + IF( NS.EQ.0 ) + $ S = ZERO +* + IF( NS.LT.JW ) THEN +* +* ==== sorting diagonal blocks of T improves accuracy for +* . graded matrices. Bubble sort deals well with +* . exchange failures. ==== +* + SORTED = .false. + I = NS + 1 + 30 CONTINUE + IF( SORTED ) + $ GO TO 50 + SORTED = .true. +* + KEND = I - 1 + I = INFQR + 1 + IF( I.EQ.NS ) THEN + K = I + 1 + ELSE IF( T( I+1, I ).EQ.ZERO ) THEN + K = I + 1 + ELSE + K = I + 2 + END IF + 40 CONTINUE + IF( K.LE.KEND ) THEN + IF( K.EQ.I+1 ) THEN + EVI = ABS( T( I, I ) ) + ELSE + EVI = ABS( T( I, I ) ) + SQRT( ABS( T( I+1, I ) ) )* + $ SQRT( ABS( T( I, I+1 ) ) ) + END IF +* + IF( K.EQ.KEND ) THEN + EVK = ABS( T( K, K ) ) + ELSE IF( T( K+1, K ).EQ.ZERO ) THEN + EVK = ABS( T( K, K ) ) + ELSE + EVK = ABS( T( K, K ) ) + SQRT( ABS( T( K+1, K ) ) )* + $ SQRT( ABS( T( K, K+1 ) ) ) + END IF +* + IF( EVI.GE.EVK ) THEN + I = K + ELSE + SORTED = .false. + IFST = I + ILST = K + CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK, + $ INFO ) + IF( INFO.EQ.0 ) THEN + I = ILST + ELSE + I = K + END IF + END IF + IF( I.EQ.KEND ) THEN + K = I + 1 + ELSE IF( T( I+1, I ).EQ.ZERO ) THEN + K = I + 1 + ELSE + K = I + 2 + END IF + GO TO 40 + END IF + GO TO 30 + 50 CONTINUE + END IF +* +* ==== Restore shift/eigenvalue array from T ==== +* + I = JW + 60 CONTINUE + IF( I.GE.INFQR+1 ) THEN + IF( I.EQ.INFQR+1 ) THEN + SR( KWTOP+I-1 ) = T( I, I ) + SI( KWTOP+I-1 ) = ZERO + I = I - 1 + ELSE IF( T( I, I-1 ).EQ.ZERO ) THEN + SR( KWTOP+I-1 ) = T( I, I ) + SI( KWTOP+I-1 ) = ZERO + I = I - 1 + ELSE + AA = T( I-1, I-1 ) + CC = T( I, I-1 ) + BB = T( I-1, I ) + DD = T( I, I ) + CALL DLANV2( AA, BB, CC, DD, SR( KWTOP+I-2 ), + $ SI( KWTOP+I-2 ), SR( KWTOP+I-1 ), + $ SI( KWTOP+I-1 ), CS, SN ) + I = I - 2 + END IF + GO TO 60 + END IF +* + IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN + IF( NS.GT.1 .AND. S.NE.ZERO ) THEN +* +* ==== Reflect spike back into lower triangle ==== +* + CALL DCOPY( NS, V, LDV, WORK, 1 ) + BETA = WORK( 1 ) + CALL DLARFG( NS, BETA, WORK( 2 ), 1, TAU ) + WORK( 1 ) = ONE +* + CALL DLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT ) +* + CALL DLARF( 'L', NS, JW, WORK, 1, TAU, T, LDT, + $ WORK( JW+1 ) ) + CALL DLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT, + $ WORK( JW+1 ) ) + CALL DLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV, + $ WORK( JW+1 ) ) +* + CALL DGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ), + $ LWORK-JW, INFO ) + END IF +* +* ==== Copy updated reduced window into place ==== +* + IF( KWTOP.GT.1 ) + $ H( KWTOP, KWTOP-1 ) = S*V( 1, 1 ) + CALL DLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH ) + CALL DCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ), + $ LDH+1 ) +* +* ==== Accumulate orthogonal matrix in order update +* . H and Z, if requested. (A modified version +* . of DORGHR that accumulates block Householder +* . transformations into V directly might be +* . marginally more efficient than the following.) ==== +* + IF( NS.GT.1 .AND. S.NE.ZERO ) THEN + CALL DORGHR( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ), + $ LWORK-JW, INFO ) + CALL DGEMM( 'N', 'N', JW, NS, NS, ONE, V, LDV, T, LDT, ZERO, + $ WV, LDWV ) + CALL DLACPY( 'A', JW, NS, WV, LDWV, V, LDV ) + END IF +* +* ==== Update vertical slab in H ==== +* + IF( WANTT ) THEN + LTOP = 1 + ELSE + LTOP = KTOP + END IF + DO 70 KROW = LTOP, KWTOP - 1, NV + KLN = MIN( NV, KWTOP-KROW ) + CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ), + $ LDH, V, LDV, ZERO, WV, LDWV ) + CALL DLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH ) + 70 CONTINUE +* +* ==== Update horizontal slab in H ==== +* + IF( WANTT ) THEN + DO 80 KCOL = KBOT + 1, N, NH + KLN = MIN( NH, N-KCOL+1 ) + CALL DGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV, + $ H( KWTOP, KCOL ), LDH, ZERO, T, LDT ) + CALL DLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ), + $ LDH ) + 80 CONTINUE + END IF +* +* ==== Update vertical slab in Z ==== +* + IF( WANTZ ) THEN + DO 90 KROW = ILOZ, IHIZ, NV + KLN = MIN( NV, IHIZ-KROW+1 ) + CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ), + $ LDZ, V, LDV, ZERO, WV, LDWV ) + CALL DLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ), + $ LDZ ) + 90 CONTINUE + END IF + END IF +* +* ==== Return the number of deflations ... ==== +* + ND = JW - NS +* +* ==== ... and the number of shifts. (Subtracting +* . INFQR from the spike length takes care +* . of the case of a rare QR failure while +* . calculating eigenvalues of the deflation +* . window.) ==== +* + NS = NS - INFQR +* +* ==== Return optimal workspace. ==== +* + WORK( 1 ) = DBLE( LWKOPT ) +* +* ==== End of DLAQR2 ==== +* + END |