summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dlaqr1.f
diff options
context:
space:
mode:
authorAnkit Raj2017-06-21 10:26:59 +0530
committerAnkit Raj2017-06-21 10:26:59 +0530
commita555820564d9f2e95ca8c97871339d3a5a2081c3 (patch)
treeadb074b66a8e6750209880e6932305ce0a94c8bf /2.3-1/src/fortran/lapack/dlaqr1.f
downloadScilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.gz
Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.bz2
Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.zip
Updated Scilab2C
Diffstat (limited to '2.3-1/src/fortran/lapack/dlaqr1.f')
-rw-r--r--2.3-1/src/fortran/lapack/dlaqr1.f97
1 files changed, 97 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dlaqr1.f b/2.3-1/src/fortran/lapack/dlaqr1.f
new file mode 100644
index 00000000..c80fe668
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dlaqr1.f
@@ -0,0 +1,97 @@
+ SUBROUTINE DLAQR1( N, H, LDH, SR1, SI1, SR2, SI2, V )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ DOUBLE PRECISION SI1, SI2, SR1, SR2
+ INTEGER LDH, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION H( LDH, * ), V( * )
+* ..
+*
+* Given a 2-by-2 or 3-by-3 matrix H, DLAQR1 sets v to a
+* scalar multiple of the first column of the product
+*
+* (*) K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)
+*
+* scaling to avoid overflows and most underflows. It
+* is assumed that either
+*
+* 1) sr1 = sr2 and si1 = -si2
+* or
+* 2) si1 = si2 = 0.
+*
+* This is useful for starting double implicit shift bulges
+* in the QR algorithm.
+*
+*
+* N (input) integer
+* Order of the matrix H. N must be either 2 or 3.
+*
+* H (input) DOUBLE PRECISION array of dimension (LDH,N)
+* The 2-by-2 or 3-by-3 matrix H in (*).
+*
+* LDH (input) integer
+* The leading dimension of H as declared in
+* the calling procedure. LDH.GE.N
+*
+* SR1 (input) DOUBLE PRECISION
+* SI1 The shifts in (*).
+* SR2
+* SI2
+*
+* V (output) DOUBLE PRECISION array of dimension N
+* A scalar multiple of the first column of the
+* matrix K in (*).
+*
+* ================================================================
+* Based on contributions by
+* Karen Braman and Ralph Byers, Department of Mathematics,
+* University of Kansas, USA
+*
+* ================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO
+ PARAMETER ( ZERO = 0.0d0 )
+* ..
+* .. Local Scalars ..
+ DOUBLE PRECISION H21S, H31S, S
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS
+* ..
+* .. Executable Statements ..
+ IF( N.EQ.2 ) THEN
+ S = ABS( H( 1, 1 )-SR2 ) + ABS( SI2 ) + ABS( H( 2, 1 ) )
+ IF( S.EQ.ZERO ) THEN
+ V( 1 ) = ZERO
+ V( 2 ) = ZERO
+ ELSE
+ H21S = H( 2, 1 ) / S
+ V( 1 ) = H21S*H( 1, 2 ) + ( H( 1, 1 )-SR1 )*
+ $ ( ( H( 1, 1 )-SR2 ) / S ) - SI1*( SI2 / S )
+ V( 2 ) = H21S*( H( 1, 1 )+H( 2, 2 )-SR1-SR2 )
+ END IF
+ ELSE
+ S = ABS( H( 1, 1 )-SR2 ) + ABS( SI2 ) + ABS( H( 2, 1 ) ) +
+ $ ABS( H( 3, 1 ) )
+ IF( S.EQ.ZERO ) THEN
+ V( 1 ) = ZERO
+ V( 2 ) = ZERO
+ V( 3 ) = ZERO
+ ELSE
+ H21S = H( 2, 1 ) / S
+ H31S = H( 3, 1 ) / S
+ V( 1 ) = ( H( 1, 1 )-SR1 )*( ( H( 1, 1 )-SR2 ) / S ) -
+ $ SI1*( SI2 / S ) + H( 1, 2 )*H21S + H( 1, 3 )*H31S
+ V( 2 ) = H21S*( H( 1, 1 )+H( 2, 2 )-SR1-SR2 ) +
+ $ H( 2, 3 )*H31S
+ V( 3 ) = H31S*( H( 1, 1 )+H( 3, 3 )-SR1-SR2 ) +
+ $ H21S*H( 3, 2 )
+ END IF
+ END IF
+ END