summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dlanv2.f
diff options
context:
space:
mode:
authorAnkit Raj2017-06-21 10:26:59 +0530
committerAnkit Raj2017-06-21 10:26:59 +0530
commita555820564d9f2e95ca8c97871339d3a5a2081c3 (patch)
treeadb074b66a8e6750209880e6932305ce0a94c8bf /2.3-1/src/fortran/lapack/dlanv2.f
downloadScilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.gz
Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.bz2
Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.zip
Updated Scilab2C
Diffstat (limited to '2.3-1/src/fortran/lapack/dlanv2.f')
-rw-r--r--2.3-1/src/fortran/lapack/dlanv2.f205
1 files changed, 205 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dlanv2.f b/2.3-1/src/fortran/lapack/dlanv2.f
new file mode 100644
index 00000000..cef3f472
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dlanv2.f
@@ -0,0 +1,205 @@
+ SUBROUTINE DLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN )
+*
+* -- LAPACK driver routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ DOUBLE PRECISION A, B, C, CS, D, RT1I, RT1R, RT2I, RT2R, SN
+* ..
+*
+* Purpose
+* =======
+*
+* DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric
+* matrix in standard form:
+*
+* [ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ]
+* [ C D ] [ SN CS ] [ CC DD ] [-SN CS ]
+*
+* where either
+* 1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or
+* 2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex
+* conjugate eigenvalues.
+*
+* Arguments
+* =========
+*
+* A (input/output) DOUBLE PRECISION
+* B (input/output) DOUBLE PRECISION
+* C (input/output) DOUBLE PRECISION
+* D (input/output) DOUBLE PRECISION
+* On entry, the elements of the input matrix.
+* On exit, they are overwritten by the elements of the
+* standardised Schur form.
+*
+* RT1R (output) DOUBLE PRECISION
+* RT1I (output) DOUBLE PRECISION
+* RT2R (output) DOUBLE PRECISION
+* RT2I (output) DOUBLE PRECISION
+* The real and imaginary parts of the eigenvalues. If the
+* eigenvalues are a complex conjugate pair, RT1I > 0.
+*
+* CS (output) DOUBLE PRECISION
+* SN (output) DOUBLE PRECISION
+* Parameters of the rotation matrix.
+*
+* Further Details
+* ===============
+*
+* Modified by V. Sima, Research Institute for Informatics, Bucharest,
+* Romania, to reduce the risk of cancellation errors,
+* when computing real eigenvalues, and to ensure, if possible, that
+* abs(RT1R) >= abs(RT2R).
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, HALF, ONE
+ PARAMETER ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
+ DOUBLE PRECISION MULTPL
+ PARAMETER ( MULTPL = 4.0D+0 )
+* ..
+* .. Local Scalars ..
+ DOUBLE PRECISION AA, BB, BCMAX, BCMIS, CC, CS1, DD, EPS, P, SAB,
+ $ SAC, SCALE, SIGMA, SN1, TAU, TEMP, Z
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMCH, DLAPY2
+ EXTERNAL DLAMCH, DLAPY2
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX, MIN, SIGN, SQRT
+* ..
+* .. Executable Statements ..
+*
+ EPS = DLAMCH( 'P' )
+ IF( C.EQ.ZERO ) THEN
+ CS = ONE
+ SN = ZERO
+ GO TO 10
+*
+ ELSE IF( B.EQ.ZERO ) THEN
+*
+* Swap rows and columns
+*
+ CS = ZERO
+ SN = ONE
+ TEMP = D
+ D = A
+ A = TEMP
+ B = -C
+ C = ZERO
+ GO TO 10
+ ELSE IF( ( A-D ).EQ.ZERO .AND. SIGN( ONE, B ).NE.SIGN( ONE, C ) )
+ $ THEN
+ CS = ONE
+ SN = ZERO
+ GO TO 10
+ ELSE
+*
+ TEMP = A - D
+ P = HALF*TEMP
+ BCMAX = MAX( ABS( B ), ABS( C ) )
+ BCMIS = MIN( ABS( B ), ABS( C ) )*SIGN( ONE, B )*SIGN( ONE, C )
+ SCALE = MAX( ABS( P ), BCMAX )
+ Z = ( P / SCALE )*P + ( BCMAX / SCALE )*BCMIS
+*
+* If Z is of the order of the machine accuracy, postpone the
+* decision on the nature of eigenvalues
+*
+ IF( Z.GE.MULTPL*EPS ) THEN
+*
+* Real eigenvalues. Compute A and D.
+*
+ Z = P + SIGN( SQRT( SCALE )*SQRT( Z ), P )
+ A = D + Z
+ D = D - ( BCMAX / Z )*BCMIS
+*
+* Compute B and the rotation matrix
+*
+ TAU = DLAPY2( C, Z )
+ CS = Z / TAU
+ SN = C / TAU
+ B = B - C
+ C = ZERO
+ ELSE
+*
+* Complex eigenvalues, or real (almost) equal eigenvalues.
+* Make diagonal elements equal.
+*
+ SIGMA = B + C
+ TAU = DLAPY2( SIGMA, TEMP )
+ CS = SQRT( HALF*( ONE+ABS( SIGMA ) / TAU ) )
+ SN = -( P / ( TAU*CS ) )*SIGN( ONE, SIGMA )
+*
+* Compute [ AA BB ] = [ A B ] [ CS -SN ]
+* [ CC DD ] [ C D ] [ SN CS ]
+*
+ AA = A*CS + B*SN
+ BB = -A*SN + B*CS
+ CC = C*CS + D*SN
+ DD = -C*SN + D*CS
+*
+* Compute [ A B ] = [ CS SN ] [ AA BB ]
+* [ C D ] [-SN CS ] [ CC DD ]
+*
+ A = AA*CS + CC*SN
+ B = BB*CS + DD*SN
+ C = -AA*SN + CC*CS
+ D = -BB*SN + DD*CS
+*
+ TEMP = HALF*( A+D )
+ A = TEMP
+ D = TEMP
+*
+ IF( C.NE.ZERO ) THEN
+ IF( B.NE.ZERO ) THEN
+ IF( SIGN( ONE, B ).EQ.SIGN( ONE, C ) ) THEN
+*
+* Real eigenvalues: reduce to upper triangular form
+*
+ SAB = SQRT( ABS( B ) )
+ SAC = SQRT( ABS( C ) )
+ P = SIGN( SAB*SAC, C )
+ TAU = ONE / SQRT( ABS( B+C ) )
+ A = TEMP + P
+ D = TEMP - P
+ B = B - C
+ C = ZERO
+ CS1 = SAB*TAU
+ SN1 = SAC*TAU
+ TEMP = CS*CS1 - SN*SN1
+ SN = CS*SN1 + SN*CS1
+ CS = TEMP
+ END IF
+ ELSE
+ B = -C
+ C = ZERO
+ TEMP = CS
+ CS = -SN
+ SN = TEMP
+ END IF
+ END IF
+ END IF
+*
+ END IF
+*
+ 10 CONTINUE
+*
+* Store eigenvalues in (RT1R,RT1I) and (RT2R,RT2I).
+*
+ RT1R = A
+ RT2R = D
+ IF( C.EQ.ZERO ) THEN
+ RT1I = ZERO
+ RT2I = ZERO
+ ELSE
+ RT1I = SQRT( ABS( B ) )*SQRT( ABS( C ) )
+ RT2I = -RT1I
+ END IF
+ RETURN
+*
+* End of DLANV2
+*
+ END