diff options
author | Siddhesh Wani | 2015-05-25 14:46:31 +0530 |
---|---|---|
committer | Siddhesh Wani | 2015-05-25 14:46:31 +0530 |
commit | 6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26 (patch) | |
tree | 1b7bd89fdcfd01715713d8a15db471dc75a96bbf /2.3-1/src/fortran/lapack/dlahqr.f | |
download | Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.gz Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.bz2 Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.zip |
Original Version
Diffstat (limited to '2.3-1/src/fortran/lapack/dlahqr.f')
-rw-r--r-- | 2.3-1/src/fortran/lapack/dlahqr.f | 501 |
1 files changed, 501 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dlahqr.f b/2.3-1/src/fortran/lapack/dlahqr.f new file mode 100644 index 00000000..449a3770 --- /dev/null +++ b/2.3-1/src/fortran/lapack/dlahqr.f @@ -0,0 +1,501 @@ + SUBROUTINE DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, + $ ILOZ, IHIZ, Z, LDZ, INFO ) +* +* -- LAPACK auxiliary routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N + LOGICAL WANTT, WANTZ +* .. +* .. Array Arguments .. + DOUBLE PRECISION H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * ) +* .. +* +* Purpose +* ======= +* +* DLAHQR is an auxiliary routine called by DHSEQR to update the +* eigenvalues and Schur decomposition already computed by DHSEQR, by +* dealing with the Hessenberg submatrix in rows and columns ILO to +* IHI. +* +* Arguments +* ========= +* +* WANTT (input) LOGICAL +* = .TRUE. : the full Schur form T is required; +* = .FALSE.: only eigenvalues are required. +* +* WANTZ (input) LOGICAL +* = .TRUE. : the matrix of Schur vectors Z is required; +* = .FALSE.: Schur vectors are not required. +* +* N (input) INTEGER +* The order of the matrix H. N >= 0. +* +* ILO (input) INTEGER +* IHI (input) INTEGER +* It is assumed that H is already upper quasi-triangular in +* rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless +* ILO = 1). DLAHQR works primarily with the Hessenberg +* submatrix in rows and columns ILO to IHI, but applies +* transformations to all of H if WANTT is .TRUE.. +* 1 <= ILO <= max(1,IHI); IHI <= N. +* +* H (input/output) DOUBLE PRECISION array, dimension (LDH,N) +* On entry, the upper Hessenberg matrix H. +* On exit, if INFO is zero and if WANTT is .TRUE., H is upper +* quasi-triangular in rows and columns ILO:IHI, with any +* 2-by-2 diagonal blocks in standard form. If INFO is zero +* and WANTT is .FALSE., the contents of H are unspecified on +* exit. The output state of H if INFO is nonzero is given +* below under the description of INFO. +* +* LDH (input) INTEGER +* The leading dimension of the array H. LDH >= max(1,N). +* +* WR (output) DOUBLE PRECISION array, dimension (N) +* WI (output) DOUBLE PRECISION array, dimension (N) +* The real and imaginary parts, respectively, of the computed +* eigenvalues ILO to IHI are stored in the corresponding +* elements of WR and WI. If two eigenvalues are computed as a +* complex conjugate pair, they are stored in consecutive +* elements of WR and WI, say the i-th and (i+1)th, with +* WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the +* eigenvalues are stored in the same order as on the diagonal +* of the Schur form returned in H, with WR(i) = H(i,i), and, if +* H(i:i+1,i:i+1) is a 2-by-2 diagonal block, +* WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i). +* +* ILOZ (input) INTEGER +* IHIZ (input) INTEGER +* Specify the rows of Z to which transformations must be +* applied if WANTZ is .TRUE.. +* 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. +* +* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N) +* If WANTZ is .TRUE., on entry Z must contain the current +* matrix Z of transformations accumulated by DHSEQR, and on +* exit Z has been updated; transformations are applied only to +* the submatrix Z(ILOZ:IHIZ,ILO:IHI). +* If WANTZ is .FALSE., Z is not referenced. +* +* LDZ (input) INTEGER +* The leading dimension of the array Z. LDZ >= max(1,N). +* +* INFO (output) INTEGER +* = 0: successful exit +* .GT. 0: If INFO = i, DLAHQR failed to compute all the +* eigenvalues ILO to IHI in a total of 30 iterations +* per eigenvalue; elements i+1:ihi of WR and WI +* contain those eigenvalues which have been +* successfully computed. +* +* If INFO .GT. 0 and WANTT is .FALSE., then on exit, +* the remaining unconverged eigenvalues are the +* eigenvalues of the upper Hessenberg matrix rows +* and columns ILO thorugh INFO of the final, output +* value of H. +* +* If INFO .GT. 0 and WANTT is .TRUE., then on exit +* (*) (initial value of H)*U = U*(final value of H) +* where U is an orthognal matrix. The final +* value of H is upper Hessenberg and triangular in +* rows and columns INFO+1 through IHI. +* +* If INFO .GT. 0 and WANTZ is .TRUE., then on exit +* (final value of Z) = (initial value of Z)*U +* where U is the orthogonal matrix in (*) +* (regardless of the value of WANTT.) +* +* Further Details +* =============== +* +* 02-96 Based on modifications by +* David Day, Sandia National Laboratory, USA +* +* 12-04 Further modifications by +* Ralph Byers, University of Kansas, USA +* +* This is a modified version of DLAHQR from LAPACK version 3.0. +* It is (1) more robust against overflow and underflow and +* (2) adopts the more conservative Ahues & Tisseur stopping +* criterion (LAWN 122, 1997). +* +* ========================================================= +* +* .. Parameters .. + INTEGER ITMAX + PARAMETER ( ITMAX = 30 ) + DOUBLE PRECISION ZERO, ONE, TWO + PARAMETER ( ZERO = 0.0d0, ONE = 1.0d0, TWO = 2.0d0 ) + DOUBLE PRECISION DAT1, DAT2 + PARAMETER ( DAT1 = 3.0d0 / 4.0d0, DAT2 = -0.4375d0 ) +* .. +* .. Local Scalars .. + DOUBLE PRECISION AA, AB, BA, BB, CS, DET, H11, H12, H21, H21S, + $ H22, RT1I, RT1R, RT2I, RT2R, RTDISC, S, SAFMAX, + $ SAFMIN, SMLNUM, SN, SUM, T1, T2, T3, TR, TST, + $ ULP, V2, V3 + INTEGER I, I1, I2, ITS, J, K, L, M, NH, NR, NZ +* .. +* .. Local Arrays .. + DOUBLE PRECISION V( 3 ) +* .. +* .. External Functions .. + DOUBLE PRECISION DLAMCH + EXTERNAL DLAMCH +* .. +* .. External Subroutines .. + EXTERNAL DCOPY, DLABAD, DLANV2, DLARFG, DROT +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, DBLE, MAX, MIN, SQRT +* .. +* .. Executable Statements .. +* + INFO = 0 +* +* Quick return if possible +* + IF( N.EQ.0 ) + $ RETURN + IF( ILO.EQ.IHI ) THEN + WR( ILO ) = H( ILO, ILO ) + WI( ILO ) = ZERO + RETURN + END IF +* +* ==== clear out the trash ==== + DO 10 J = ILO, IHI - 3 + H( J+2, J ) = ZERO + H( J+3, J ) = ZERO + 10 CONTINUE + IF( ILO.LE.IHI-2 ) + $ H( IHI, IHI-2 ) = ZERO +* + NH = IHI - ILO + 1 + NZ = IHIZ - ILOZ + 1 +* +* Set machine-dependent constants for the stopping criterion. +* + SAFMIN = DLAMCH( 'SAFE MINIMUM' ) + SAFMAX = ONE / SAFMIN + CALL DLABAD( SAFMIN, SAFMAX ) + ULP = DLAMCH( 'PRECISION' ) + SMLNUM = SAFMIN*( DBLE( NH ) / ULP ) +* +* I1 and I2 are the indices of the first row and last column of H +* to which transformations must be applied. If eigenvalues only are +* being computed, I1 and I2 are set inside the main loop. +* + IF( WANTT ) THEN + I1 = 1 + I2 = N + END IF +* +* The main loop begins here. I is the loop index and decreases from +* IHI to ILO in steps of 1 or 2. Each iteration of the loop works +* with the active submatrix in rows and columns L to I. +* Eigenvalues I+1 to IHI have already converged. Either L = ILO or +* H(L,L-1) is negligible so that the matrix splits. +* + I = IHI + 20 CONTINUE + L = ILO + IF( I.LT.ILO ) + $ GO TO 160 +* +* Perform QR iterations on rows and columns ILO to I until a +* submatrix of order 1 or 2 splits off at the bottom because a +* subdiagonal element has become negligible. +* + DO 140 ITS = 0, ITMAX +* +* Look for a single small subdiagonal element. +* + DO 30 K = I, L + 1, -1 + IF( ABS( H( K, K-1 ) ).LE.SMLNUM ) + $ GO TO 40 + TST = ABS( H( K-1, K-1 ) ) + ABS( H( K, K ) ) + IF( TST.EQ.ZERO ) THEN + IF( K-2.GE.ILO ) + $ TST = TST + ABS( H( K-1, K-2 ) ) + IF( K+1.LE.IHI ) + $ TST = TST + ABS( H( K+1, K ) ) + END IF +* ==== The following is a conservative small subdiagonal +* . deflation criterion due to Ahues & Tisseur (LAWN 122, +* . 1997). It has better mathematical foundation and +* . improves accuracy in some cases. ==== + IF( ABS( H( K, K-1 ) ).LE.ULP*TST ) THEN + AB = MAX( ABS( H( K, K-1 ) ), ABS( H( K-1, K ) ) ) + BA = MIN( ABS( H( K, K-1 ) ), ABS( H( K-1, K ) ) ) + AA = MAX( ABS( H( K, K ) ), + $ ABS( H( K-1, K-1 )-H( K, K ) ) ) + BB = MIN( ABS( H( K, K ) ), + $ ABS( H( K-1, K-1 )-H( K, K ) ) ) + S = AA + AB + IF( BA*( AB / S ).LE.MAX( SMLNUM, + $ ULP*( BB*( AA / S ) ) ) )GO TO 40 + END IF + 30 CONTINUE + 40 CONTINUE + L = K + IF( L.GT.ILO ) THEN +* +* H(L,L-1) is negligible +* + H( L, L-1 ) = ZERO + END IF +* +* Exit from loop if a submatrix of order 1 or 2 has split off. +* + IF( L.GE.I-1 ) + $ GO TO 150 +* +* Now the active submatrix is in rows and columns L to I. If +* eigenvalues only are being computed, only the active submatrix +* need be transformed. +* + IF( .NOT.WANTT ) THEN + I1 = L + I2 = I + END IF +* + IF( ITS.EQ.10 .OR. ITS.EQ.20 ) THEN +* +* Exceptional shift. +* + H11 = DAT1*S + H( I, I ) + H12 = DAT2*S + H21 = S + H22 = H11 + ELSE +* +* Prepare to use Francis' double shift +* (i.e. 2nd degree generalized Rayleigh quotient) +* + H11 = H( I-1, I-1 ) + H21 = H( I, I-1 ) + H12 = H( I-1, I ) + H22 = H( I, I ) + END IF + S = ABS( H11 ) + ABS( H12 ) + ABS( H21 ) + ABS( H22 ) + IF( S.EQ.ZERO ) THEN + RT1R = ZERO + RT1I = ZERO + RT2R = ZERO + RT2I = ZERO + ELSE + H11 = H11 / S + H21 = H21 / S + H12 = H12 / S + H22 = H22 / S + TR = ( H11+H22 ) / TWO + DET = ( H11-TR )*( H22-TR ) - H12*H21 + RTDISC = SQRT( ABS( DET ) ) + IF( DET.GE.ZERO ) THEN +* +* ==== complex conjugate shifts ==== +* + RT1R = TR*S + RT2R = RT1R + RT1I = RTDISC*S + RT2I = -RT1I + ELSE +* +* ==== real shifts (use only one of them) ==== +* + RT1R = TR + RTDISC + RT2R = TR - RTDISC + IF( ABS( RT1R-H22 ).LE.ABS( RT2R-H22 ) ) THEN + RT1R = RT1R*S + RT2R = RT1R + ELSE + RT2R = RT2R*S + RT1R = RT2R + END IF + RT1I = ZERO + RT2I = ZERO + END IF + END IF +* +* Look for two consecutive small subdiagonal elements. +* + DO 50 M = I - 2, L, -1 +* Determine the effect of starting the double-shift QR +* iteration at row M, and see if this would make H(M,M-1) +* negligible. (The following uses scaling to avoid +* overflows and most underflows.) +* + H21S = H( M+1, M ) + S = ABS( H( M, M )-RT2R ) + ABS( RT2I ) + ABS( H21S ) + H21S = H( M+1, M ) / S + V( 1 ) = H21S*H( M, M+1 ) + ( H( M, M )-RT1R )* + $ ( ( H( M, M )-RT2R ) / S ) - RT1I*( RT2I / S ) + V( 2 ) = H21S*( H( M, M )+H( M+1, M+1 )-RT1R-RT2R ) + V( 3 ) = H21S*H( M+2, M+1 ) + S = ABS( V( 1 ) ) + ABS( V( 2 ) ) + ABS( V( 3 ) ) + V( 1 ) = V( 1 ) / S + V( 2 ) = V( 2 ) / S + V( 3 ) = V( 3 ) / S + IF( M.EQ.L ) + $ GO TO 60 + IF( ABS( H( M, M-1 ) )*( ABS( V( 2 ) )+ABS( V( 3 ) ) ).LE. + $ ULP*ABS( V( 1 ) )*( ABS( H( M-1, M-1 ) )+ABS( H( M, + $ M ) )+ABS( H( M+1, M+1 ) ) ) )GO TO 60 + 50 CONTINUE + 60 CONTINUE +* +* Double-shift QR step +* + DO 130 K = M, I - 1 +* +* The first iteration of this loop determines a reflection G +* from the vector V and applies it from left and right to H, +* thus creating a nonzero bulge below the subdiagonal. +* +* Each subsequent iteration determines a reflection G to +* restore the Hessenberg form in the (K-1)th column, and thus +* chases the bulge one step toward the bottom of the active +* submatrix. NR is the order of G. +* + NR = MIN( 3, I-K+1 ) + IF( K.GT.M ) + $ CALL DCOPY( NR, H( K, K-1 ), 1, V, 1 ) + CALL DLARFG( NR, V( 1 ), V( 2 ), 1, T1 ) + IF( K.GT.M ) THEN + H( K, K-1 ) = V( 1 ) + H( K+1, K-1 ) = ZERO + IF( K.LT.I-1 ) + $ H( K+2, K-1 ) = ZERO + ELSE IF( M.GT.L ) THEN + H( K, K-1 ) = -H( K, K-1 ) + END IF + V2 = V( 2 ) + T2 = T1*V2 + IF( NR.EQ.3 ) THEN + V3 = V( 3 ) + T3 = T1*V3 +* +* Apply G from the left to transform the rows of the matrix +* in columns K to I2. +* + DO 70 J = K, I2 + SUM = H( K, J ) + V2*H( K+1, J ) + V3*H( K+2, J ) + H( K, J ) = H( K, J ) - SUM*T1 + H( K+1, J ) = H( K+1, J ) - SUM*T2 + H( K+2, J ) = H( K+2, J ) - SUM*T3 + 70 CONTINUE +* +* Apply G from the right to transform the columns of the +* matrix in rows I1 to min(K+3,I). +* + DO 80 J = I1, MIN( K+3, I ) + SUM = H( J, K ) + V2*H( J, K+1 ) + V3*H( J, K+2 ) + H( J, K ) = H( J, K ) - SUM*T1 + H( J, K+1 ) = H( J, K+1 ) - SUM*T2 + H( J, K+2 ) = H( J, K+2 ) - SUM*T3 + 80 CONTINUE +* + IF( WANTZ ) THEN +* +* Accumulate transformations in the matrix Z +* + DO 90 J = ILOZ, IHIZ + SUM = Z( J, K ) + V2*Z( J, K+1 ) + V3*Z( J, K+2 ) + Z( J, K ) = Z( J, K ) - SUM*T1 + Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2 + Z( J, K+2 ) = Z( J, K+2 ) - SUM*T3 + 90 CONTINUE + END IF + ELSE IF( NR.EQ.2 ) THEN +* +* Apply G from the left to transform the rows of the matrix +* in columns K to I2. +* + DO 100 J = K, I2 + SUM = H( K, J ) + V2*H( K+1, J ) + H( K, J ) = H( K, J ) - SUM*T1 + H( K+1, J ) = H( K+1, J ) - SUM*T2 + 100 CONTINUE +* +* Apply G from the right to transform the columns of the +* matrix in rows I1 to min(K+3,I). +* + DO 110 J = I1, I + SUM = H( J, K ) + V2*H( J, K+1 ) + H( J, K ) = H( J, K ) - SUM*T1 + H( J, K+1 ) = H( J, K+1 ) - SUM*T2 + 110 CONTINUE +* + IF( WANTZ ) THEN +* +* Accumulate transformations in the matrix Z +* + DO 120 J = ILOZ, IHIZ + SUM = Z( J, K ) + V2*Z( J, K+1 ) + Z( J, K ) = Z( J, K ) - SUM*T1 + Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2 + 120 CONTINUE + END IF + END IF + 130 CONTINUE +* + 140 CONTINUE +* +* Failure to converge in remaining number of iterations +* + INFO = I + RETURN +* + 150 CONTINUE +* + IF( L.EQ.I ) THEN +* +* H(I,I-1) is negligible: one eigenvalue has converged. +* + WR( I ) = H( I, I ) + WI( I ) = ZERO + ELSE IF( L.EQ.I-1 ) THEN +* +* H(I-1,I-2) is negligible: a pair of eigenvalues have converged. +* +* Transform the 2-by-2 submatrix to standard Schur form, +* and compute and store the eigenvalues. +* + CALL DLANV2( H( I-1, I-1 ), H( I-1, I ), H( I, I-1 ), + $ H( I, I ), WR( I-1 ), WI( I-1 ), WR( I ), WI( I ), + $ CS, SN ) +* + IF( WANTT ) THEN +* +* Apply the transformation to the rest of H. +* + IF( I2.GT.I ) + $ CALL DROT( I2-I, H( I-1, I+1 ), LDH, H( I, I+1 ), LDH, + $ CS, SN ) + CALL DROT( I-I1-1, H( I1, I-1 ), 1, H( I1, I ), 1, CS, SN ) + END IF + IF( WANTZ ) THEN +* +* Apply the transformation to Z. +* + CALL DROT( NZ, Z( ILOZ, I-1 ), 1, Z( ILOZ, I ), 1, CS, SN ) + END IF + END IF +* +* return to start of the main loop with new value of I. +* + I = L - 1 + GO TO 20 +* + 160 CONTINUE + RETURN +* +* End of DLAHQR +* + END |