summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dlahqr.f
diff options
context:
space:
mode:
authorSiddhesh Wani2015-05-25 14:46:31 +0530
committerSiddhesh Wani2015-05-25 14:46:31 +0530
commit6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26 (patch)
tree1b7bd89fdcfd01715713d8a15db471dc75a96bbf /2.3-1/src/fortran/lapack/dlahqr.f
downloadScilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.gz
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.bz2
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.zip
Original Version
Diffstat (limited to '2.3-1/src/fortran/lapack/dlahqr.f')
-rw-r--r--2.3-1/src/fortran/lapack/dlahqr.f501
1 files changed, 501 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dlahqr.f b/2.3-1/src/fortran/lapack/dlahqr.f
new file mode 100644
index 00000000..449a3770
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dlahqr.f
@@ -0,0 +1,501 @@
+ SUBROUTINE DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
+ $ ILOZ, IHIZ, Z, LDZ, INFO )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
+ LOGICAL WANTT, WANTZ
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * )
+* ..
+*
+* Purpose
+* =======
+*
+* DLAHQR is an auxiliary routine called by DHSEQR to update the
+* eigenvalues and Schur decomposition already computed by DHSEQR, by
+* dealing with the Hessenberg submatrix in rows and columns ILO to
+* IHI.
+*
+* Arguments
+* =========
+*
+* WANTT (input) LOGICAL
+* = .TRUE. : the full Schur form T is required;
+* = .FALSE.: only eigenvalues are required.
+*
+* WANTZ (input) LOGICAL
+* = .TRUE. : the matrix of Schur vectors Z is required;
+* = .FALSE.: Schur vectors are not required.
+*
+* N (input) INTEGER
+* The order of the matrix H. N >= 0.
+*
+* ILO (input) INTEGER
+* IHI (input) INTEGER
+* It is assumed that H is already upper quasi-triangular in
+* rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
+* ILO = 1). DLAHQR works primarily with the Hessenberg
+* submatrix in rows and columns ILO to IHI, but applies
+* transformations to all of H if WANTT is .TRUE..
+* 1 <= ILO <= max(1,IHI); IHI <= N.
+*
+* H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
+* On entry, the upper Hessenberg matrix H.
+* On exit, if INFO is zero and if WANTT is .TRUE., H is upper
+* quasi-triangular in rows and columns ILO:IHI, with any
+* 2-by-2 diagonal blocks in standard form. If INFO is zero
+* and WANTT is .FALSE., the contents of H are unspecified on
+* exit. The output state of H if INFO is nonzero is given
+* below under the description of INFO.
+*
+* LDH (input) INTEGER
+* The leading dimension of the array H. LDH >= max(1,N).
+*
+* WR (output) DOUBLE PRECISION array, dimension (N)
+* WI (output) DOUBLE PRECISION array, dimension (N)
+* The real and imaginary parts, respectively, of the computed
+* eigenvalues ILO to IHI are stored in the corresponding
+* elements of WR and WI. If two eigenvalues are computed as a
+* complex conjugate pair, they are stored in consecutive
+* elements of WR and WI, say the i-th and (i+1)th, with
+* WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
+* eigenvalues are stored in the same order as on the diagonal
+* of the Schur form returned in H, with WR(i) = H(i,i), and, if
+* H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
+* WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
+*
+* ILOZ (input) INTEGER
+* IHIZ (input) INTEGER
+* Specify the rows of Z to which transformations must be
+* applied if WANTZ is .TRUE..
+* 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
+*
+* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
+* If WANTZ is .TRUE., on entry Z must contain the current
+* matrix Z of transformations accumulated by DHSEQR, and on
+* exit Z has been updated; transformations are applied only to
+* the submatrix Z(ILOZ:IHIZ,ILO:IHI).
+* If WANTZ is .FALSE., Z is not referenced.
+*
+* LDZ (input) INTEGER
+* The leading dimension of the array Z. LDZ >= max(1,N).
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* .GT. 0: If INFO = i, DLAHQR failed to compute all the
+* eigenvalues ILO to IHI in a total of 30 iterations
+* per eigenvalue; elements i+1:ihi of WR and WI
+* contain those eigenvalues which have been
+* successfully computed.
+*
+* If INFO .GT. 0 and WANTT is .FALSE., then on exit,
+* the remaining unconverged eigenvalues are the
+* eigenvalues of the upper Hessenberg matrix rows
+* and columns ILO thorugh INFO of the final, output
+* value of H.
+*
+* If INFO .GT. 0 and WANTT is .TRUE., then on exit
+* (*) (initial value of H)*U = U*(final value of H)
+* where U is an orthognal matrix. The final
+* value of H is upper Hessenberg and triangular in
+* rows and columns INFO+1 through IHI.
+*
+* If INFO .GT. 0 and WANTZ is .TRUE., then on exit
+* (final value of Z) = (initial value of Z)*U
+* where U is the orthogonal matrix in (*)
+* (regardless of the value of WANTT.)
+*
+* Further Details
+* ===============
+*
+* 02-96 Based on modifications by
+* David Day, Sandia National Laboratory, USA
+*
+* 12-04 Further modifications by
+* Ralph Byers, University of Kansas, USA
+*
+* This is a modified version of DLAHQR from LAPACK version 3.0.
+* It is (1) more robust against overflow and underflow and
+* (2) adopts the more conservative Ahues & Tisseur stopping
+* criterion (LAWN 122, 1997).
+*
+* =========================================================
+*
+* .. Parameters ..
+ INTEGER ITMAX
+ PARAMETER ( ITMAX = 30 )
+ DOUBLE PRECISION ZERO, ONE, TWO
+ PARAMETER ( ZERO = 0.0d0, ONE = 1.0d0, TWO = 2.0d0 )
+ DOUBLE PRECISION DAT1, DAT2
+ PARAMETER ( DAT1 = 3.0d0 / 4.0d0, DAT2 = -0.4375d0 )
+* ..
+* .. Local Scalars ..
+ DOUBLE PRECISION AA, AB, BA, BB, CS, DET, H11, H12, H21, H21S,
+ $ H22, RT1I, RT1R, RT2I, RT2R, RTDISC, S, SAFMAX,
+ $ SAFMIN, SMLNUM, SN, SUM, T1, T2, T3, TR, TST,
+ $ ULP, V2, V3
+ INTEGER I, I1, I2, ITS, J, K, L, M, NH, NR, NZ
+* ..
+* .. Local Arrays ..
+ DOUBLE PRECISION V( 3 )
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMCH
+ EXTERNAL DLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL DCOPY, DLABAD, DLANV2, DLARFG, DROT
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, MAX, MIN, SQRT
+* ..
+* .. Executable Statements ..
+*
+ INFO = 0
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+ IF( ILO.EQ.IHI ) THEN
+ WR( ILO ) = H( ILO, ILO )
+ WI( ILO ) = ZERO
+ RETURN
+ END IF
+*
+* ==== clear out the trash ====
+ DO 10 J = ILO, IHI - 3
+ H( J+2, J ) = ZERO
+ H( J+3, J ) = ZERO
+ 10 CONTINUE
+ IF( ILO.LE.IHI-2 )
+ $ H( IHI, IHI-2 ) = ZERO
+*
+ NH = IHI - ILO + 1
+ NZ = IHIZ - ILOZ + 1
+*
+* Set machine-dependent constants for the stopping criterion.
+*
+ SAFMIN = DLAMCH( 'SAFE MINIMUM' )
+ SAFMAX = ONE / SAFMIN
+ CALL DLABAD( SAFMIN, SAFMAX )
+ ULP = DLAMCH( 'PRECISION' )
+ SMLNUM = SAFMIN*( DBLE( NH ) / ULP )
+*
+* I1 and I2 are the indices of the first row and last column of H
+* to which transformations must be applied. If eigenvalues only are
+* being computed, I1 and I2 are set inside the main loop.
+*
+ IF( WANTT ) THEN
+ I1 = 1
+ I2 = N
+ END IF
+*
+* The main loop begins here. I is the loop index and decreases from
+* IHI to ILO in steps of 1 or 2. Each iteration of the loop works
+* with the active submatrix in rows and columns L to I.
+* Eigenvalues I+1 to IHI have already converged. Either L = ILO or
+* H(L,L-1) is negligible so that the matrix splits.
+*
+ I = IHI
+ 20 CONTINUE
+ L = ILO
+ IF( I.LT.ILO )
+ $ GO TO 160
+*
+* Perform QR iterations on rows and columns ILO to I until a
+* submatrix of order 1 or 2 splits off at the bottom because a
+* subdiagonal element has become negligible.
+*
+ DO 140 ITS = 0, ITMAX
+*
+* Look for a single small subdiagonal element.
+*
+ DO 30 K = I, L + 1, -1
+ IF( ABS( H( K, K-1 ) ).LE.SMLNUM )
+ $ GO TO 40
+ TST = ABS( H( K-1, K-1 ) ) + ABS( H( K, K ) )
+ IF( TST.EQ.ZERO ) THEN
+ IF( K-2.GE.ILO )
+ $ TST = TST + ABS( H( K-1, K-2 ) )
+ IF( K+1.LE.IHI )
+ $ TST = TST + ABS( H( K+1, K ) )
+ END IF
+* ==== The following is a conservative small subdiagonal
+* . deflation criterion due to Ahues & Tisseur (LAWN 122,
+* . 1997). It has better mathematical foundation and
+* . improves accuracy in some cases. ====
+ IF( ABS( H( K, K-1 ) ).LE.ULP*TST ) THEN
+ AB = MAX( ABS( H( K, K-1 ) ), ABS( H( K-1, K ) ) )
+ BA = MIN( ABS( H( K, K-1 ) ), ABS( H( K-1, K ) ) )
+ AA = MAX( ABS( H( K, K ) ),
+ $ ABS( H( K-1, K-1 )-H( K, K ) ) )
+ BB = MIN( ABS( H( K, K ) ),
+ $ ABS( H( K-1, K-1 )-H( K, K ) ) )
+ S = AA + AB
+ IF( BA*( AB / S ).LE.MAX( SMLNUM,
+ $ ULP*( BB*( AA / S ) ) ) )GO TO 40
+ END IF
+ 30 CONTINUE
+ 40 CONTINUE
+ L = K
+ IF( L.GT.ILO ) THEN
+*
+* H(L,L-1) is negligible
+*
+ H( L, L-1 ) = ZERO
+ END IF
+*
+* Exit from loop if a submatrix of order 1 or 2 has split off.
+*
+ IF( L.GE.I-1 )
+ $ GO TO 150
+*
+* Now the active submatrix is in rows and columns L to I. If
+* eigenvalues only are being computed, only the active submatrix
+* need be transformed.
+*
+ IF( .NOT.WANTT ) THEN
+ I1 = L
+ I2 = I
+ END IF
+*
+ IF( ITS.EQ.10 .OR. ITS.EQ.20 ) THEN
+*
+* Exceptional shift.
+*
+ H11 = DAT1*S + H( I, I )
+ H12 = DAT2*S
+ H21 = S
+ H22 = H11
+ ELSE
+*
+* Prepare to use Francis' double shift
+* (i.e. 2nd degree generalized Rayleigh quotient)
+*
+ H11 = H( I-1, I-1 )
+ H21 = H( I, I-1 )
+ H12 = H( I-1, I )
+ H22 = H( I, I )
+ END IF
+ S = ABS( H11 ) + ABS( H12 ) + ABS( H21 ) + ABS( H22 )
+ IF( S.EQ.ZERO ) THEN
+ RT1R = ZERO
+ RT1I = ZERO
+ RT2R = ZERO
+ RT2I = ZERO
+ ELSE
+ H11 = H11 / S
+ H21 = H21 / S
+ H12 = H12 / S
+ H22 = H22 / S
+ TR = ( H11+H22 ) / TWO
+ DET = ( H11-TR )*( H22-TR ) - H12*H21
+ RTDISC = SQRT( ABS( DET ) )
+ IF( DET.GE.ZERO ) THEN
+*
+* ==== complex conjugate shifts ====
+*
+ RT1R = TR*S
+ RT2R = RT1R
+ RT1I = RTDISC*S
+ RT2I = -RT1I
+ ELSE
+*
+* ==== real shifts (use only one of them) ====
+*
+ RT1R = TR + RTDISC
+ RT2R = TR - RTDISC
+ IF( ABS( RT1R-H22 ).LE.ABS( RT2R-H22 ) ) THEN
+ RT1R = RT1R*S
+ RT2R = RT1R
+ ELSE
+ RT2R = RT2R*S
+ RT1R = RT2R
+ END IF
+ RT1I = ZERO
+ RT2I = ZERO
+ END IF
+ END IF
+*
+* Look for two consecutive small subdiagonal elements.
+*
+ DO 50 M = I - 2, L, -1
+* Determine the effect of starting the double-shift QR
+* iteration at row M, and see if this would make H(M,M-1)
+* negligible. (The following uses scaling to avoid
+* overflows and most underflows.)
+*
+ H21S = H( M+1, M )
+ S = ABS( H( M, M )-RT2R ) + ABS( RT2I ) + ABS( H21S )
+ H21S = H( M+1, M ) / S
+ V( 1 ) = H21S*H( M, M+1 ) + ( H( M, M )-RT1R )*
+ $ ( ( H( M, M )-RT2R ) / S ) - RT1I*( RT2I / S )
+ V( 2 ) = H21S*( H( M, M )+H( M+1, M+1 )-RT1R-RT2R )
+ V( 3 ) = H21S*H( M+2, M+1 )
+ S = ABS( V( 1 ) ) + ABS( V( 2 ) ) + ABS( V( 3 ) )
+ V( 1 ) = V( 1 ) / S
+ V( 2 ) = V( 2 ) / S
+ V( 3 ) = V( 3 ) / S
+ IF( M.EQ.L )
+ $ GO TO 60
+ IF( ABS( H( M, M-1 ) )*( ABS( V( 2 ) )+ABS( V( 3 ) ) ).LE.
+ $ ULP*ABS( V( 1 ) )*( ABS( H( M-1, M-1 ) )+ABS( H( M,
+ $ M ) )+ABS( H( M+1, M+1 ) ) ) )GO TO 60
+ 50 CONTINUE
+ 60 CONTINUE
+*
+* Double-shift QR step
+*
+ DO 130 K = M, I - 1
+*
+* The first iteration of this loop determines a reflection G
+* from the vector V and applies it from left and right to H,
+* thus creating a nonzero bulge below the subdiagonal.
+*
+* Each subsequent iteration determines a reflection G to
+* restore the Hessenberg form in the (K-1)th column, and thus
+* chases the bulge one step toward the bottom of the active
+* submatrix. NR is the order of G.
+*
+ NR = MIN( 3, I-K+1 )
+ IF( K.GT.M )
+ $ CALL DCOPY( NR, H( K, K-1 ), 1, V, 1 )
+ CALL DLARFG( NR, V( 1 ), V( 2 ), 1, T1 )
+ IF( K.GT.M ) THEN
+ H( K, K-1 ) = V( 1 )
+ H( K+1, K-1 ) = ZERO
+ IF( K.LT.I-1 )
+ $ H( K+2, K-1 ) = ZERO
+ ELSE IF( M.GT.L ) THEN
+ H( K, K-1 ) = -H( K, K-1 )
+ END IF
+ V2 = V( 2 )
+ T2 = T1*V2
+ IF( NR.EQ.3 ) THEN
+ V3 = V( 3 )
+ T3 = T1*V3
+*
+* Apply G from the left to transform the rows of the matrix
+* in columns K to I2.
+*
+ DO 70 J = K, I2
+ SUM = H( K, J ) + V2*H( K+1, J ) + V3*H( K+2, J )
+ H( K, J ) = H( K, J ) - SUM*T1
+ H( K+1, J ) = H( K+1, J ) - SUM*T2
+ H( K+2, J ) = H( K+2, J ) - SUM*T3
+ 70 CONTINUE
+*
+* Apply G from the right to transform the columns of the
+* matrix in rows I1 to min(K+3,I).
+*
+ DO 80 J = I1, MIN( K+3, I )
+ SUM = H( J, K ) + V2*H( J, K+1 ) + V3*H( J, K+2 )
+ H( J, K ) = H( J, K ) - SUM*T1
+ H( J, K+1 ) = H( J, K+1 ) - SUM*T2
+ H( J, K+2 ) = H( J, K+2 ) - SUM*T3
+ 80 CONTINUE
+*
+ IF( WANTZ ) THEN
+*
+* Accumulate transformations in the matrix Z
+*
+ DO 90 J = ILOZ, IHIZ
+ SUM = Z( J, K ) + V2*Z( J, K+1 ) + V3*Z( J, K+2 )
+ Z( J, K ) = Z( J, K ) - SUM*T1
+ Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
+ Z( J, K+2 ) = Z( J, K+2 ) - SUM*T3
+ 90 CONTINUE
+ END IF
+ ELSE IF( NR.EQ.2 ) THEN
+*
+* Apply G from the left to transform the rows of the matrix
+* in columns K to I2.
+*
+ DO 100 J = K, I2
+ SUM = H( K, J ) + V2*H( K+1, J )
+ H( K, J ) = H( K, J ) - SUM*T1
+ H( K+1, J ) = H( K+1, J ) - SUM*T2
+ 100 CONTINUE
+*
+* Apply G from the right to transform the columns of the
+* matrix in rows I1 to min(K+3,I).
+*
+ DO 110 J = I1, I
+ SUM = H( J, K ) + V2*H( J, K+1 )
+ H( J, K ) = H( J, K ) - SUM*T1
+ H( J, K+1 ) = H( J, K+1 ) - SUM*T2
+ 110 CONTINUE
+*
+ IF( WANTZ ) THEN
+*
+* Accumulate transformations in the matrix Z
+*
+ DO 120 J = ILOZ, IHIZ
+ SUM = Z( J, K ) + V2*Z( J, K+1 )
+ Z( J, K ) = Z( J, K ) - SUM*T1
+ Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
+ 120 CONTINUE
+ END IF
+ END IF
+ 130 CONTINUE
+*
+ 140 CONTINUE
+*
+* Failure to converge in remaining number of iterations
+*
+ INFO = I
+ RETURN
+*
+ 150 CONTINUE
+*
+ IF( L.EQ.I ) THEN
+*
+* H(I,I-1) is negligible: one eigenvalue has converged.
+*
+ WR( I ) = H( I, I )
+ WI( I ) = ZERO
+ ELSE IF( L.EQ.I-1 ) THEN
+*
+* H(I-1,I-2) is negligible: a pair of eigenvalues have converged.
+*
+* Transform the 2-by-2 submatrix to standard Schur form,
+* and compute and store the eigenvalues.
+*
+ CALL DLANV2( H( I-1, I-1 ), H( I-1, I ), H( I, I-1 ),
+ $ H( I, I ), WR( I-1 ), WI( I-1 ), WR( I ), WI( I ),
+ $ CS, SN )
+*
+ IF( WANTT ) THEN
+*
+* Apply the transformation to the rest of H.
+*
+ IF( I2.GT.I )
+ $ CALL DROT( I2-I, H( I-1, I+1 ), LDH, H( I, I+1 ), LDH,
+ $ CS, SN )
+ CALL DROT( I-I1-1, H( I1, I-1 ), 1, H( I1, I ), 1, CS, SN )
+ END IF
+ IF( WANTZ ) THEN
+*
+* Apply the transformation to Z.
+*
+ CALL DROT( NZ, Z( ILOZ, I-1 ), 1, Z( ILOZ, I ), 1, CS, SN )
+ END IF
+ END IF
+*
+* return to start of the main loop with new value of I.
+*
+ I = L - 1
+ GO TO 20
+*
+ 160 CONTINUE
+ RETURN
+*
+* End of DLAHQR
+*
+ END