summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dlag2.f
diff options
context:
space:
mode:
authorSiddhesh Wani2015-05-25 14:46:31 +0530
committerSiddhesh Wani2015-05-25 14:46:31 +0530
commit6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26 (patch)
tree1b7bd89fdcfd01715713d8a15db471dc75a96bbf /2.3-1/src/fortran/lapack/dlag2.f
downloadScilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.gz
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.bz2
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.zip
Original Version
Diffstat (limited to '2.3-1/src/fortran/lapack/dlag2.f')
-rw-r--r--2.3-1/src/fortran/lapack/dlag2.f300
1 files changed, 300 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dlag2.f b/2.3-1/src/fortran/lapack/dlag2.f
new file mode 100644
index 00000000..e754203b
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dlag2.f
@@ -0,0 +1,300 @@
+ SUBROUTINE DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1,
+ $ WR2, WI )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER LDA, LDB
+ DOUBLE PRECISION SAFMIN, SCALE1, SCALE2, WI, WR1, WR2
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), B( LDB, * )
+* ..
+*
+* Purpose
+* =======
+*
+* DLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue
+* problem A - w B, with scaling as necessary to avoid over-/underflow.
+*
+* The scaling factor "s" results in a modified eigenvalue equation
+*
+* s A - w B
+*
+* where s is a non-negative scaling factor chosen so that w, w B,
+* and s A do not overflow and, if possible, do not underflow, either.
+*
+* Arguments
+* =========
+*
+* A (input) DOUBLE PRECISION array, dimension (LDA, 2)
+* On entry, the 2 x 2 matrix A. It is assumed that its 1-norm
+* is less than 1/SAFMIN. Entries less than
+* sqrt(SAFMIN)*norm(A) are subject to being treated as zero.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= 2.
+*
+* B (input) DOUBLE PRECISION array, dimension (LDB, 2)
+* On entry, the 2 x 2 upper triangular matrix B. It is
+* assumed that the one-norm of B is less than 1/SAFMIN. The
+* diagonals should be at least sqrt(SAFMIN) times the largest
+* element of B (in absolute value); if a diagonal is smaller
+* than that, then +/- sqrt(SAFMIN) will be used instead of
+* that diagonal.
+*
+* LDB (input) INTEGER
+* The leading dimension of the array B. LDB >= 2.
+*
+* SAFMIN (input) DOUBLE PRECISION
+* The smallest positive number s.t. 1/SAFMIN does not
+* overflow. (This should always be DLAMCH('S') -- it is an
+* argument in order to avoid having to call DLAMCH frequently.)
+*
+* SCALE1 (output) DOUBLE PRECISION
+* A scaling factor used to avoid over-/underflow in the
+* eigenvalue equation which defines the first eigenvalue. If
+* the eigenvalues are complex, then the eigenvalues are
+* ( WR1 +/- WI i ) / SCALE1 (which may lie outside the
+* exponent range of the machine), SCALE1=SCALE2, and SCALE1
+* will always be positive. If the eigenvalues are real, then
+* the first (real) eigenvalue is WR1 / SCALE1 , but this may
+* overflow or underflow, and in fact, SCALE1 may be zero or
+* less than the underflow threshhold if the exact eigenvalue
+* is sufficiently large.
+*
+* SCALE2 (output) DOUBLE PRECISION
+* A scaling factor used to avoid over-/underflow in the
+* eigenvalue equation which defines the second eigenvalue. If
+* the eigenvalues are complex, then SCALE2=SCALE1. If the
+* eigenvalues are real, then the second (real) eigenvalue is
+* WR2 / SCALE2 , but this may overflow or underflow, and in
+* fact, SCALE2 may be zero or less than the underflow
+* threshhold if the exact eigenvalue is sufficiently large.
+*
+* WR1 (output) DOUBLE PRECISION
+* If the eigenvalue is real, then WR1 is SCALE1 times the
+* eigenvalue closest to the (2,2) element of A B**(-1). If the
+* eigenvalue is complex, then WR1=WR2 is SCALE1 times the real
+* part of the eigenvalues.
+*
+* WR2 (output) DOUBLE PRECISION
+* If the eigenvalue is real, then WR2 is SCALE2 times the
+* other eigenvalue. If the eigenvalue is complex, then
+* WR1=WR2 is SCALE1 times the real part of the eigenvalues.
+*
+* WI (output) DOUBLE PRECISION
+* If the eigenvalue is real, then WI is zero. If the
+* eigenvalue is complex, then WI is SCALE1 times the imaginary
+* part of the eigenvalues. WI will always be non-negative.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE, TWO
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
+ DOUBLE PRECISION HALF
+ PARAMETER ( HALF = ONE / TWO )
+ DOUBLE PRECISION FUZZY1
+ PARAMETER ( FUZZY1 = ONE+1.0D-5 )
+* ..
+* .. Local Scalars ..
+ DOUBLE PRECISION A11, A12, A21, A22, ABI22, ANORM, AS11, AS12,
+ $ AS22, ASCALE, B11, B12, B22, BINV11, BINV22,
+ $ BMIN, BNORM, BSCALE, BSIZE, C1, C2, C3, C4, C5,
+ $ DIFF, DISCR, PP, QQ, R, RTMAX, RTMIN, S1, S2,
+ $ SAFMAX, SHIFT, SS, SUM, WABS, WBIG, WDET,
+ $ WSCALE, WSIZE, WSMALL
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX, MIN, SIGN, SQRT
+* ..
+* .. Executable Statements ..
+*
+ RTMIN = SQRT( SAFMIN )
+ RTMAX = ONE / RTMIN
+ SAFMAX = ONE / SAFMIN
+*
+* Scale A
+*
+ ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ),
+ $ ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN )
+ ASCALE = ONE / ANORM
+ A11 = ASCALE*A( 1, 1 )
+ A21 = ASCALE*A( 2, 1 )
+ A12 = ASCALE*A( 1, 2 )
+ A22 = ASCALE*A( 2, 2 )
+*
+* Perturb B if necessary to insure non-singularity
+*
+ B11 = B( 1, 1 )
+ B12 = B( 1, 2 )
+ B22 = B( 2, 2 )
+ BMIN = RTMIN*MAX( ABS( B11 ), ABS( B12 ), ABS( B22 ), RTMIN )
+ IF( ABS( B11 ).LT.BMIN )
+ $ B11 = SIGN( BMIN, B11 )
+ IF( ABS( B22 ).LT.BMIN )
+ $ B22 = SIGN( BMIN, B22 )
+*
+* Scale B
+*
+ BNORM = MAX( ABS( B11 ), ABS( B12 )+ABS( B22 ), SAFMIN )
+ BSIZE = MAX( ABS( B11 ), ABS( B22 ) )
+ BSCALE = ONE / BSIZE
+ B11 = B11*BSCALE
+ B12 = B12*BSCALE
+ B22 = B22*BSCALE
+*
+* Compute larger eigenvalue by method described by C. van Loan
+*
+* ( AS is A shifted by -SHIFT*B )
+*
+ BINV11 = ONE / B11
+ BINV22 = ONE / B22
+ S1 = A11*BINV11
+ S2 = A22*BINV22
+ IF( ABS( S1 ).LE.ABS( S2 ) ) THEN
+ AS12 = A12 - S1*B12
+ AS22 = A22 - S1*B22
+ SS = A21*( BINV11*BINV22 )
+ ABI22 = AS22*BINV22 - SS*B12
+ PP = HALF*ABI22
+ SHIFT = S1
+ ELSE
+ AS12 = A12 - S2*B12
+ AS11 = A11 - S2*B11
+ SS = A21*( BINV11*BINV22 )
+ ABI22 = -SS*B12
+ PP = HALF*( AS11*BINV11+ABI22 )
+ SHIFT = S2
+ END IF
+ QQ = SS*AS12
+ IF( ABS( PP*RTMIN ).GE.ONE ) THEN
+ DISCR = ( RTMIN*PP )**2 + QQ*SAFMIN
+ R = SQRT( ABS( DISCR ) )*RTMAX
+ ELSE
+ IF( PP**2+ABS( QQ ).LE.SAFMIN ) THEN
+ DISCR = ( RTMAX*PP )**2 + QQ*SAFMAX
+ R = SQRT( ABS( DISCR ) )*RTMIN
+ ELSE
+ DISCR = PP**2 + QQ
+ R = SQRT( ABS( DISCR ) )
+ END IF
+ END IF
+*
+* Note: the test of R in the following IF is to cover the case when
+* DISCR is small and negative and is flushed to zero during
+* the calculation of R. On machines which have a consistent
+* flush-to-zero threshhold and handle numbers above that
+* threshhold correctly, it would not be necessary.
+*
+ IF( DISCR.GE.ZERO .OR. R.EQ.ZERO ) THEN
+ SUM = PP + SIGN( R, PP )
+ DIFF = PP - SIGN( R, PP )
+ WBIG = SHIFT + SUM
+*
+* Compute smaller eigenvalue
+*
+ WSMALL = SHIFT + DIFF
+ IF( HALF*ABS( WBIG ).GT.MAX( ABS( WSMALL ), SAFMIN ) ) THEN
+ WDET = ( A11*A22-A12*A21 )*( BINV11*BINV22 )
+ WSMALL = WDET / WBIG
+ END IF
+*
+* Choose (real) eigenvalue closest to 2,2 element of A*B**(-1)
+* for WR1.
+*
+ IF( PP.GT.ABI22 ) THEN
+ WR1 = MIN( WBIG, WSMALL )
+ WR2 = MAX( WBIG, WSMALL )
+ ELSE
+ WR1 = MAX( WBIG, WSMALL )
+ WR2 = MIN( WBIG, WSMALL )
+ END IF
+ WI = ZERO
+ ELSE
+*
+* Complex eigenvalues
+*
+ WR1 = SHIFT + PP
+ WR2 = WR1
+ WI = R
+ END IF
+*
+* Further scaling to avoid underflow and overflow in computing
+* SCALE1 and overflow in computing w*B.
+*
+* This scale factor (WSCALE) is bounded from above using C1 and C2,
+* and from below using C3 and C4.
+* C1 implements the condition s A must never overflow.
+* C2 implements the condition w B must never overflow.
+* C3, with C2,
+* implement the condition that s A - w B must never overflow.
+* C4 implements the condition s should not underflow.
+* C5 implements the condition max(s,|w|) should be at least 2.
+*
+ C1 = BSIZE*( SAFMIN*MAX( ONE, ASCALE ) )
+ C2 = SAFMIN*MAX( ONE, BNORM )
+ C3 = BSIZE*SAFMIN
+ IF( ASCALE.LE.ONE .AND. BSIZE.LE.ONE ) THEN
+ C4 = MIN( ONE, ( ASCALE / SAFMIN )*BSIZE )
+ ELSE
+ C4 = ONE
+ END IF
+ IF( ASCALE.LE.ONE .OR. BSIZE.LE.ONE ) THEN
+ C5 = MIN( ONE, ASCALE*BSIZE )
+ ELSE
+ C5 = ONE
+ END IF
+*
+* Scale first eigenvalue
+*
+ WABS = ABS( WR1 ) + ABS( WI )
+ WSIZE = MAX( SAFMIN, C1, FUZZY1*( WABS*C2+C3 ),
+ $ MIN( C4, HALF*MAX( WABS, C5 ) ) )
+ IF( WSIZE.NE.ONE ) THEN
+ WSCALE = ONE / WSIZE
+ IF( WSIZE.GT.ONE ) THEN
+ SCALE1 = ( MAX( ASCALE, BSIZE )*WSCALE )*
+ $ MIN( ASCALE, BSIZE )
+ ELSE
+ SCALE1 = ( MIN( ASCALE, BSIZE )*WSCALE )*
+ $ MAX( ASCALE, BSIZE )
+ END IF
+ WR1 = WR1*WSCALE
+ IF( WI.NE.ZERO ) THEN
+ WI = WI*WSCALE
+ WR2 = WR1
+ SCALE2 = SCALE1
+ END IF
+ ELSE
+ SCALE1 = ASCALE*BSIZE
+ SCALE2 = SCALE1
+ END IF
+*
+* Scale second eigenvalue (if real)
+*
+ IF( WI.EQ.ZERO ) THEN
+ WSIZE = MAX( SAFMIN, C1, FUZZY1*( ABS( WR2 )*C2+C3 ),
+ $ MIN( C4, HALF*MAX( ABS( WR2 ), C5 ) ) )
+ IF( WSIZE.NE.ONE ) THEN
+ WSCALE = ONE / WSIZE
+ IF( WSIZE.GT.ONE ) THEN
+ SCALE2 = ( MAX( ASCALE, BSIZE )*WSCALE )*
+ $ MIN( ASCALE, BSIZE )
+ ELSE
+ SCALE2 = ( MIN( ASCALE, BSIZE )*WSCALE )*
+ $ MAX( ASCALE, BSIZE )
+ END IF
+ WR2 = WR2*WSCALE
+ ELSE
+ SCALE2 = ASCALE*BSIZE
+ END IF
+ END IF
+*
+* End of DLAG2
+*
+ RETURN
+ END