diff options
author | Siddhesh Wani | 2015-05-25 14:46:31 +0530 |
---|---|---|
committer | Siddhesh Wani | 2015-05-25 14:46:31 +0530 |
commit | 6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26 (patch) | |
tree | 1b7bd89fdcfd01715713d8a15db471dc75a96bbf /2.3-1/src/fortran/lapack/dlag2.f | |
download | Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.gz Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.bz2 Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.zip |
Original Version
Diffstat (limited to '2.3-1/src/fortran/lapack/dlag2.f')
-rw-r--r-- | 2.3-1/src/fortran/lapack/dlag2.f | 300 |
1 files changed, 300 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dlag2.f b/2.3-1/src/fortran/lapack/dlag2.f new file mode 100644 index 00000000..e754203b --- /dev/null +++ b/2.3-1/src/fortran/lapack/dlag2.f @@ -0,0 +1,300 @@ + SUBROUTINE DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1, + $ WR2, WI ) +* +* -- LAPACK auxiliary routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + INTEGER LDA, LDB + DOUBLE PRECISION SAFMIN, SCALE1, SCALE2, WI, WR1, WR2 +* .. +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), B( LDB, * ) +* .. +* +* Purpose +* ======= +* +* DLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue +* problem A - w B, with scaling as necessary to avoid over-/underflow. +* +* The scaling factor "s" results in a modified eigenvalue equation +* +* s A - w B +* +* where s is a non-negative scaling factor chosen so that w, w B, +* and s A do not overflow and, if possible, do not underflow, either. +* +* Arguments +* ========= +* +* A (input) DOUBLE PRECISION array, dimension (LDA, 2) +* On entry, the 2 x 2 matrix A. It is assumed that its 1-norm +* is less than 1/SAFMIN. Entries less than +* sqrt(SAFMIN)*norm(A) are subject to being treated as zero. +* +* LDA (input) INTEGER +* The leading dimension of the array A. LDA >= 2. +* +* B (input) DOUBLE PRECISION array, dimension (LDB, 2) +* On entry, the 2 x 2 upper triangular matrix B. It is +* assumed that the one-norm of B is less than 1/SAFMIN. The +* diagonals should be at least sqrt(SAFMIN) times the largest +* element of B (in absolute value); if a diagonal is smaller +* than that, then +/- sqrt(SAFMIN) will be used instead of +* that diagonal. +* +* LDB (input) INTEGER +* The leading dimension of the array B. LDB >= 2. +* +* SAFMIN (input) DOUBLE PRECISION +* The smallest positive number s.t. 1/SAFMIN does not +* overflow. (This should always be DLAMCH('S') -- it is an +* argument in order to avoid having to call DLAMCH frequently.) +* +* SCALE1 (output) DOUBLE PRECISION +* A scaling factor used to avoid over-/underflow in the +* eigenvalue equation which defines the first eigenvalue. If +* the eigenvalues are complex, then the eigenvalues are +* ( WR1 +/- WI i ) / SCALE1 (which may lie outside the +* exponent range of the machine), SCALE1=SCALE2, and SCALE1 +* will always be positive. If the eigenvalues are real, then +* the first (real) eigenvalue is WR1 / SCALE1 , but this may +* overflow or underflow, and in fact, SCALE1 may be zero or +* less than the underflow threshhold if the exact eigenvalue +* is sufficiently large. +* +* SCALE2 (output) DOUBLE PRECISION +* A scaling factor used to avoid over-/underflow in the +* eigenvalue equation which defines the second eigenvalue. If +* the eigenvalues are complex, then SCALE2=SCALE1. If the +* eigenvalues are real, then the second (real) eigenvalue is +* WR2 / SCALE2 , but this may overflow or underflow, and in +* fact, SCALE2 may be zero or less than the underflow +* threshhold if the exact eigenvalue is sufficiently large. +* +* WR1 (output) DOUBLE PRECISION +* If the eigenvalue is real, then WR1 is SCALE1 times the +* eigenvalue closest to the (2,2) element of A B**(-1). If the +* eigenvalue is complex, then WR1=WR2 is SCALE1 times the real +* part of the eigenvalues. +* +* WR2 (output) DOUBLE PRECISION +* If the eigenvalue is real, then WR2 is SCALE2 times the +* other eigenvalue. If the eigenvalue is complex, then +* WR1=WR2 is SCALE1 times the real part of the eigenvalues. +* +* WI (output) DOUBLE PRECISION +* If the eigenvalue is real, then WI is zero. If the +* eigenvalue is complex, then WI is SCALE1 times the imaginary +* part of the eigenvalues. WI will always be non-negative. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE, TWO + PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 ) + DOUBLE PRECISION HALF + PARAMETER ( HALF = ONE / TWO ) + DOUBLE PRECISION FUZZY1 + PARAMETER ( FUZZY1 = ONE+1.0D-5 ) +* .. +* .. Local Scalars .. + DOUBLE PRECISION A11, A12, A21, A22, ABI22, ANORM, AS11, AS12, + $ AS22, ASCALE, B11, B12, B22, BINV11, BINV22, + $ BMIN, BNORM, BSCALE, BSIZE, C1, C2, C3, C4, C5, + $ DIFF, DISCR, PP, QQ, R, RTMAX, RTMIN, S1, S2, + $ SAFMAX, SHIFT, SS, SUM, WABS, WBIG, WDET, + $ WSCALE, WSIZE, WSMALL +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX, MIN, SIGN, SQRT +* .. +* .. Executable Statements .. +* + RTMIN = SQRT( SAFMIN ) + RTMAX = ONE / RTMIN + SAFMAX = ONE / SAFMIN +* +* Scale A +* + ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ), + $ ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN ) + ASCALE = ONE / ANORM + A11 = ASCALE*A( 1, 1 ) + A21 = ASCALE*A( 2, 1 ) + A12 = ASCALE*A( 1, 2 ) + A22 = ASCALE*A( 2, 2 ) +* +* Perturb B if necessary to insure non-singularity +* + B11 = B( 1, 1 ) + B12 = B( 1, 2 ) + B22 = B( 2, 2 ) + BMIN = RTMIN*MAX( ABS( B11 ), ABS( B12 ), ABS( B22 ), RTMIN ) + IF( ABS( B11 ).LT.BMIN ) + $ B11 = SIGN( BMIN, B11 ) + IF( ABS( B22 ).LT.BMIN ) + $ B22 = SIGN( BMIN, B22 ) +* +* Scale B +* + BNORM = MAX( ABS( B11 ), ABS( B12 )+ABS( B22 ), SAFMIN ) + BSIZE = MAX( ABS( B11 ), ABS( B22 ) ) + BSCALE = ONE / BSIZE + B11 = B11*BSCALE + B12 = B12*BSCALE + B22 = B22*BSCALE +* +* Compute larger eigenvalue by method described by C. van Loan +* +* ( AS is A shifted by -SHIFT*B ) +* + BINV11 = ONE / B11 + BINV22 = ONE / B22 + S1 = A11*BINV11 + S2 = A22*BINV22 + IF( ABS( S1 ).LE.ABS( S2 ) ) THEN + AS12 = A12 - S1*B12 + AS22 = A22 - S1*B22 + SS = A21*( BINV11*BINV22 ) + ABI22 = AS22*BINV22 - SS*B12 + PP = HALF*ABI22 + SHIFT = S1 + ELSE + AS12 = A12 - S2*B12 + AS11 = A11 - S2*B11 + SS = A21*( BINV11*BINV22 ) + ABI22 = -SS*B12 + PP = HALF*( AS11*BINV11+ABI22 ) + SHIFT = S2 + END IF + QQ = SS*AS12 + IF( ABS( PP*RTMIN ).GE.ONE ) THEN + DISCR = ( RTMIN*PP )**2 + QQ*SAFMIN + R = SQRT( ABS( DISCR ) )*RTMAX + ELSE + IF( PP**2+ABS( QQ ).LE.SAFMIN ) THEN + DISCR = ( RTMAX*PP )**2 + QQ*SAFMAX + R = SQRT( ABS( DISCR ) )*RTMIN + ELSE + DISCR = PP**2 + QQ + R = SQRT( ABS( DISCR ) ) + END IF + END IF +* +* Note: the test of R in the following IF is to cover the case when +* DISCR is small and negative and is flushed to zero during +* the calculation of R. On machines which have a consistent +* flush-to-zero threshhold and handle numbers above that +* threshhold correctly, it would not be necessary. +* + IF( DISCR.GE.ZERO .OR. R.EQ.ZERO ) THEN + SUM = PP + SIGN( R, PP ) + DIFF = PP - SIGN( R, PP ) + WBIG = SHIFT + SUM +* +* Compute smaller eigenvalue +* + WSMALL = SHIFT + DIFF + IF( HALF*ABS( WBIG ).GT.MAX( ABS( WSMALL ), SAFMIN ) ) THEN + WDET = ( A11*A22-A12*A21 )*( BINV11*BINV22 ) + WSMALL = WDET / WBIG + END IF +* +* Choose (real) eigenvalue closest to 2,2 element of A*B**(-1) +* for WR1. +* + IF( PP.GT.ABI22 ) THEN + WR1 = MIN( WBIG, WSMALL ) + WR2 = MAX( WBIG, WSMALL ) + ELSE + WR1 = MAX( WBIG, WSMALL ) + WR2 = MIN( WBIG, WSMALL ) + END IF + WI = ZERO + ELSE +* +* Complex eigenvalues +* + WR1 = SHIFT + PP + WR2 = WR1 + WI = R + END IF +* +* Further scaling to avoid underflow and overflow in computing +* SCALE1 and overflow in computing w*B. +* +* This scale factor (WSCALE) is bounded from above using C1 and C2, +* and from below using C3 and C4. +* C1 implements the condition s A must never overflow. +* C2 implements the condition w B must never overflow. +* C3, with C2, +* implement the condition that s A - w B must never overflow. +* C4 implements the condition s should not underflow. +* C5 implements the condition max(s,|w|) should be at least 2. +* + C1 = BSIZE*( SAFMIN*MAX( ONE, ASCALE ) ) + C2 = SAFMIN*MAX( ONE, BNORM ) + C3 = BSIZE*SAFMIN + IF( ASCALE.LE.ONE .AND. BSIZE.LE.ONE ) THEN + C4 = MIN( ONE, ( ASCALE / SAFMIN )*BSIZE ) + ELSE + C4 = ONE + END IF + IF( ASCALE.LE.ONE .OR. BSIZE.LE.ONE ) THEN + C5 = MIN( ONE, ASCALE*BSIZE ) + ELSE + C5 = ONE + END IF +* +* Scale first eigenvalue +* + WABS = ABS( WR1 ) + ABS( WI ) + WSIZE = MAX( SAFMIN, C1, FUZZY1*( WABS*C2+C3 ), + $ MIN( C4, HALF*MAX( WABS, C5 ) ) ) + IF( WSIZE.NE.ONE ) THEN + WSCALE = ONE / WSIZE + IF( WSIZE.GT.ONE ) THEN + SCALE1 = ( MAX( ASCALE, BSIZE )*WSCALE )* + $ MIN( ASCALE, BSIZE ) + ELSE + SCALE1 = ( MIN( ASCALE, BSIZE )*WSCALE )* + $ MAX( ASCALE, BSIZE ) + END IF + WR1 = WR1*WSCALE + IF( WI.NE.ZERO ) THEN + WI = WI*WSCALE + WR2 = WR1 + SCALE2 = SCALE1 + END IF + ELSE + SCALE1 = ASCALE*BSIZE + SCALE2 = SCALE1 + END IF +* +* Scale second eigenvalue (if real) +* + IF( WI.EQ.ZERO ) THEN + WSIZE = MAX( SAFMIN, C1, FUZZY1*( ABS( WR2 )*C2+C3 ), + $ MIN( C4, HALF*MAX( ABS( WR2 ), C5 ) ) ) + IF( WSIZE.NE.ONE ) THEN + WSCALE = ONE / WSIZE + IF( WSIZE.GT.ONE ) THEN + SCALE2 = ( MAX( ASCALE, BSIZE )*WSCALE )* + $ MIN( ASCALE, BSIZE ) + ELSE + SCALE2 = ( MIN( ASCALE, BSIZE )*WSCALE )* + $ MAX( ASCALE, BSIZE ) + END IF + WR2 = WR2*WSCALE + ELSE + SCALE2 = ASCALE*BSIZE + END IF + END IF +* +* End of DLAG2 +* + RETURN + END |