summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dhseqr.f
diff options
context:
space:
mode:
authorSiddhesh Wani2015-05-25 14:46:31 +0530
committerSiddhesh Wani2015-05-25 14:46:31 +0530
commit6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26 (patch)
tree1b7bd89fdcfd01715713d8a15db471dc75a96bbf /2.3-1/src/fortran/lapack/dhseqr.f
downloadScilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.gz
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.bz2
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.zip
Original Version
Diffstat (limited to '2.3-1/src/fortran/lapack/dhseqr.f')
-rw-r--r--2.3-1/src/fortran/lapack/dhseqr.f407
1 files changed, 407 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dhseqr.f b/2.3-1/src/fortran/lapack/dhseqr.f
new file mode 100644
index 00000000..5b307fa8
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dhseqr.f
@@ -0,0 +1,407 @@
+ SUBROUTINE DHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z,
+ $ LDZ, WORK, LWORK, INFO )
+*
+* -- LAPACK driver routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER IHI, ILO, INFO, LDH, LDZ, LWORK, N
+ CHARACTER COMPZ, JOB
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION H( LDH, * ), WI( * ), WORK( * ), WR( * ),
+ $ Z( LDZ, * )
+* ..
+* Purpose
+* =======
+*
+* DHSEQR computes the eigenvalues of a Hessenberg matrix H
+* and, optionally, the matrices T and Z from the Schur decomposition
+* H = Z T Z**T, where T is an upper quasi-triangular matrix (the
+* Schur form), and Z is the orthogonal matrix of Schur vectors.
+*
+* Optionally Z may be postmultiplied into an input orthogonal
+* matrix Q so that this routine can give the Schur factorization
+* of a matrix A which has been reduced to the Hessenberg form H
+* by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
+*
+* Arguments
+* =========
+*
+* JOB (input) CHARACTER*1
+* = 'E': compute eigenvalues only;
+* = 'S': compute eigenvalues and the Schur form T.
+*
+* COMPZ (input) CHARACTER*1
+* = 'N': no Schur vectors are computed;
+* = 'I': Z is initialized to the unit matrix and the matrix Z
+* of Schur vectors of H is returned;
+* = 'V': Z must contain an orthogonal matrix Q on entry, and
+* the product Q*Z is returned.
+*
+* N (input) INTEGER
+* The order of the matrix H. N .GE. 0.
+*
+* ILO (input) INTEGER
+* IHI (input) INTEGER
+* It is assumed that H is already upper triangular in rows
+* and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
+* set by a previous call to DGEBAL, and then passed to DGEHRD
+* when the matrix output by DGEBAL is reduced to Hessenberg
+* form. Otherwise ILO and IHI should be set to 1 and N
+* respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
+* If N = 0, then ILO = 1 and IHI = 0.
+*
+* H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
+* On entry, the upper Hessenberg matrix H.
+* On exit, if INFO = 0 and JOB = 'S', then H contains the
+* upper quasi-triangular matrix T from the Schur decomposition
+* (the Schur form); 2-by-2 diagonal blocks (corresponding to
+* complex conjugate pairs of eigenvalues) are returned in
+* standard form, with H(i,i) = H(i+1,i+1) and
+* H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and JOB = 'E', the
+* contents of H are unspecified on exit. (The output value of
+* H when INFO.GT.0 is given under the description of INFO
+* below.)
+*
+* Unlike earlier versions of DHSEQR, this subroutine may
+* explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1
+* or j = IHI+1, IHI+2, ... N.
+*
+* LDH (input) INTEGER
+* The leading dimension of the array H. LDH .GE. max(1,N).
+*
+* WR (output) DOUBLE PRECISION array, dimension (N)
+* WI (output) DOUBLE PRECISION array, dimension (N)
+* The real and imaginary parts, respectively, of the computed
+* eigenvalues. If two eigenvalues are computed as a complex
+* conjugate pair, they are stored in consecutive elements of
+* WR and WI, say the i-th and (i+1)th, with WI(i) .GT. 0 and
+* WI(i+1) .LT. 0. If JOB = 'S', the eigenvalues are stored in
+* the same order as on the diagonal of the Schur form returned
+* in H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2
+* diagonal block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
+* WI(i+1) = -WI(i).
+*
+* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
+* If COMPZ = 'N', Z is not referenced.
+* If COMPZ = 'I', on entry Z need not be set and on exit,
+* if INFO = 0, Z contains the orthogonal matrix Z of the Schur
+* vectors of H. If COMPZ = 'V', on entry Z must contain an
+* N-by-N matrix Q, which is assumed to be equal to the unit
+* matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,
+* if INFO = 0, Z contains Q*Z.
+* Normally Q is the orthogonal matrix generated by DORGHR
+* after the call to DGEHRD which formed the Hessenberg matrix
+* H. (The output value of Z when INFO.GT.0 is given under
+* the description of INFO below.)
+*
+* LDZ (input) INTEGER
+* The leading dimension of the array Z. if COMPZ = 'I' or
+* COMPZ = 'V', then LDZ.GE.MAX(1,N). Otherwize, LDZ.GE.1.
+*
+* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
+* On exit, if INFO = 0, WORK(1) returns an estimate of
+* the optimal value for LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK. LWORK .GE. max(1,N)
+* is sufficient, but LWORK typically as large as 6*N may
+* be required for optimal performance. A workspace query
+* to determine the optimal workspace size is recommended.
+*
+* If LWORK = -1, then DHSEQR does a workspace query.
+* In this case, DHSEQR checks the input parameters and
+* estimates the optimal workspace size for the given
+* values of N, ILO and IHI. The estimate is returned
+* in WORK(1). No error message related to LWORK is
+* issued by XERBLA. Neither H nor Z are accessed.
+*
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* .LT. 0: if INFO = -i, the i-th argument had an illegal
+* value
+* .GT. 0: if INFO = i, DHSEQR failed to compute all of
+* the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
+* and WI contain those eigenvalues which have been
+* successfully computed. (Failures are rare.)
+*
+* If INFO .GT. 0 and JOB = 'E', then on exit, the
+* remaining unconverged eigenvalues are the eigen-
+* values of the upper Hessenberg matrix rows and
+* columns ILO through INFO of the final, output
+* value of H.
+*
+* If INFO .GT. 0 and JOB = 'S', then on exit
+*
+* (*) (initial value of H)*U = U*(final value of H)
+*
+* where U is an orthogonal matrix. The final
+* value of H is upper Hessenberg and quasi-triangular
+* in rows and columns INFO+1 through IHI.
+*
+* If INFO .GT. 0 and COMPZ = 'V', then on exit
+*
+* (final value of Z) = (initial value of Z)*U
+*
+* where U is the orthogonal matrix in (*) (regard-
+* less of the value of JOB.)
+*
+* If INFO .GT. 0 and COMPZ = 'I', then on exit
+* (final value of Z) = U
+* where U is the orthogonal matrix in (*) (regard-
+* less of the value of JOB.)
+*
+* If INFO .GT. 0 and COMPZ = 'N', then Z is not
+* accessed.
+*
+* ================================================================
+* Default values supplied by
+* ILAENV(ISPEC,'DHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).
+* It is suggested that these defaults be adjusted in order
+* to attain best performance in each particular
+* computational environment.
+*
+* ISPEC=1: The DLAHQR vs DLAQR0 crossover point.
+* Default: 75. (Must be at least 11.)
+*
+* ISPEC=2: Recommended deflation window size.
+* This depends on ILO, IHI and NS. NS is the
+* number of simultaneous shifts returned
+* by ILAENV(ISPEC=4). (See ISPEC=4 below.)
+* The default for (IHI-ILO+1).LE.500 is NS.
+* The default for (IHI-ILO+1).GT.500 is 3*NS/2.
+*
+* ISPEC=3: Nibble crossover point. (See ILAENV for
+* details.) Default: 14% of deflation window
+* size.
+*
+* ISPEC=4: Number of simultaneous shifts, NS, in
+* a multi-shift QR iteration.
+*
+* If IHI-ILO+1 is ...
+*
+* greater than ...but less ... the
+* or equal to ... than default is
+*
+* 1 30 NS - 2(+)
+* 30 60 NS - 4(+)
+* 60 150 NS = 10(+)
+* 150 590 NS = **
+* 590 3000 NS = 64
+* 3000 6000 NS = 128
+* 6000 infinity NS = 256
+*
+* (+) By default some or all matrices of this order
+* are passed to the implicit double shift routine
+* DLAHQR and NS is ignored. See ISPEC=1 above
+* and comments in IPARM for details.
+*
+* The asterisks (**) indicate an ad-hoc
+* function of N increasing from 10 to 64.
+*
+* ISPEC=5: Select structured matrix multiply.
+* (See ILAENV for details.) Default: 3.
+*
+* ================================================================
+* Based on contributions by
+* Karen Braman and Ralph Byers, Department of Mathematics,
+* University of Kansas, USA
+*
+* ================================================================
+* References:
+* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
+* Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
+* Performance, SIAM Journal of Matrix Analysis, volume 23, pages
+* 929--947, 2002.
+*
+* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
+* Algorithm Part II: Aggressive Early Deflation, SIAM Journal
+* of Matrix Analysis, volume 23, pages 948--973, 2002.
+*
+* ================================================================
+* .. Parameters ..
+*
+* ==== Matrices of order NTINY or smaller must be processed by
+* . DLAHQR because of insufficient subdiagonal scratch space.
+* . (This is a hard limit.) ====
+*
+* ==== NL allocates some local workspace to help small matrices
+* . through a rare DLAHQR failure. NL .GT. NTINY = 11 is
+* . required and NL .LE. NMIN = ILAENV(ISPEC=1,...) is recom-
+* . mended. (The default value of NMIN is 75.) Using NL = 49
+* . allows up to six simultaneous shifts and a 16-by-16
+* . deflation window. ====
+*
+ INTEGER NTINY
+ PARAMETER ( NTINY = 11 )
+ INTEGER NL
+ PARAMETER ( NL = 49 )
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0d0, ONE = 1.0d0 )
+* ..
+* .. Local Arrays ..
+ DOUBLE PRECISION HL( NL, NL ), WORKL( NL )
+* ..
+* .. Local Scalars ..
+ INTEGER I, KBOT, NMIN
+ LOGICAL INITZ, LQUERY, WANTT, WANTZ
+* ..
+* .. External Functions ..
+ INTEGER ILAENV
+ LOGICAL LSAME
+ EXTERNAL ILAENV, LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLACPY, DLAHQR, DLAQR0, DLASET, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DBLE, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* ==== Decode and check the input parameters. ====
+*
+ WANTT = LSAME( JOB, 'S' )
+ INITZ = LSAME( COMPZ, 'I' )
+ WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
+ WORK( 1 ) = DBLE( MAX( 1, N ) )
+ LQUERY = LWORK.EQ.-1
+*
+ INFO = 0
+ IF( .NOT.LSAME( JOB, 'E' ) .AND. .NOT.WANTT ) THEN
+ INFO = -1
+ ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
+ INFO = -4
+ ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
+ INFO = -5
+ ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
+ INFO = -7
+ ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
+ INFO = -11
+ ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
+ INFO = -13
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+*
+* ==== Quick return in case of invalid argument. ====
+*
+ CALL XERBLA( 'DHSEQR', -INFO )
+ RETURN
+*
+ ELSE IF( N.EQ.0 ) THEN
+*
+* ==== Quick return in case N = 0; nothing to do. ====
+*
+ RETURN
+*
+ ELSE IF( LQUERY ) THEN
+*
+* ==== Quick return in case of a workspace query ====
+*
+ CALL DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
+ $ IHI, Z, LDZ, WORK, LWORK, INFO )
+* ==== Ensure reported workspace size is backward-compatible with
+* . previous LAPACK versions. ====
+ WORK( 1 ) = MAX( DBLE( MAX( 1, N ) ), WORK( 1 ) )
+ RETURN
+*
+ ELSE
+*
+* ==== copy eigenvalues isolated by DGEBAL ====
+*
+ DO 10 I = 1, ILO - 1
+ WR( I ) = H( I, I )
+ WI( I ) = ZERO
+ 10 CONTINUE
+ DO 20 I = IHI + 1, N
+ WR( I ) = H( I, I )
+ WI( I ) = ZERO
+ 20 CONTINUE
+*
+* ==== Initialize Z, if requested ====
+*
+ IF( INITZ )
+ $ CALL DLASET( 'A', N, N, ZERO, ONE, Z, LDZ )
+*
+* ==== Quick return if possible ====
+*
+ IF( ILO.EQ.IHI ) THEN
+ WR( ILO ) = H( ILO, ILO )
+ WI( ILO ) = ZERO
+ RETURN
+ END IF
+*
+* ==== DLAHQR/DLAQR0 crossover point ====
+*
+ NMIN = ILAENV( 12, 'DHSEQR', JOB( : 1 ) // COMPZ( : 1 ), N,
+ $ ILO, IHI, LWORK )
+ NMIN = MAX( NTINY, NMIN )
+*
+* ==== DLAQR0 for big matrices; DLAHQR for small ones ====
+*
+ IF( N.GT.NMIN ) THEN
+ CALL DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
+ $ IHI, Z, LDZ, WORK, LWORK, INFO )
+ ELSE
+*
+* ==== Small matrix ====
+*
+ CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
+ $ IHI, Z, LDZ, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+*
+* ==== A rare DLAHQR failure! DLAQR0 sometimes succeeds
+* . when DLAHQR fails. ====
+*
+ KBOT = INFO
+*
+ IF( N.GE.NL ) THEN
+*
+* ==== Larger matrices have enough subdiagonal scratch
+* . space to call DLAQR0 directly. ====
+*
+ CALL DLAQR0( WANTT, WANTZ, N, ILO, KBOT, H, LDH, WR,
+ $ WI, ILO, IHI, Z, LDZ, WORK, LWORK, INFO )
+*
+ ELSE
+*
+* ==== Tiny matrices don't have enough subdiagonal
+* . scratch space to benefit from DLAQR0. Hence,
+* . tiny matrices must be copied into a larger
+* . array before calling DLAQR0. ====
+*
+ CALL DLACPY( 'A', N, N, H, LDH, HL, NL )
+ HL( N+1, N ) = ZERO
+ CALL DLASET( 'A', NL, NL-N, ZERO, ZERO, HL( 1, N+1 ),
+ $ NL )
+ CALL DLAQR0( WANTT, WANTZ, NL, ILO, KBOT, HL, NL, WR,
+ $ WI, ILO, IHI, Z, LDZ, WORKL, NL, INFO )
+ IF( WANTT .OR. INFO.NE.0 )
+ $ CALL DLACPY( 'A', N, N, HL, NL, H, LDH )
+ END IF
+ END IF
+ END IF
+*
+* ==== Clear out the trash, if necessary. ====
+*
+ IF( ( WANTT .OR. INFO.NE.0 ) .AND. N.GT.2 )
+ $ CALL DLASET( 'L', N-2, N-2, ZERO, ZERO, H( 3, 1 ), LDH )
+*
+* ==== Ensure reported workspace size is backward-compatible with
+* . previous LAPACK versions. ====
+*
+ WORK( 1 ) = MAX( DBLE( MAX( 1, N ) ), WORK( 1 ) )
+ END IF
+*
+* ==== End of DHSEQR ====
+*
+ END