diff options
author | Siddhesh Wani | 2015-05-25 14:46:31 +0530 |
---|---|---|
committer | Siddhesh Wani | 2015-05-25 14:46:31 +0530 |
commit | 6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26 (patch) | |
tree | 1b7bd89fdcfd01715713d8a15db471dc75a96bbf /2.3-1/src/fortran/lapack/dhseqr.f | |
download | Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.gz Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.bz2 Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.zip |
Original Version
Diffstat (limited to '2.3-1/src/fortran/lapack/dhseqr.f')
-rw-r--r-- | 2.3-1/src/fortran/lapack/dhseqr.f | 407 |
1 files changed, 407 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dhseqr.f b/2.3-1/src/fortran/lapack/dhseqr.f new file mode 100644 index 00000000..5b307fa8 --- /dev/null +++ b/2.3-1/src/fortran/lapack/dhseqr.f @@ -0,0 +1,407 @@ + SUBROUTINE DHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z, + $ LDZ, WORK, LWORK, INFO ) +* +* -- LAPACK driver routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + INTEGER IHI, ILO, INFO, LDH, LDZ, LWORK, N + CHARACTER COMPZ, JOB +* .. +* .. Array Arguments .. + DOUBLE PRECISION H( LDH, * ), WI( * ), WORK( * ), WR( * ), + $ Z( LDZ, * ) +* .. +* Purpose +* ======= +* +* DHSEQR computes the eigenvalues of a Hessenberg matrix H +* and, optionally, the matrices T and Z from the Schur decomposition +* H = Z T Z**T, where T is an upper quasi-triangular matrix (the +* Schur form), and Z is the orthogonal matrix of Schur vectors. +* +* Optionally Z may be postmultiplied into an input orthogonal +* matrix Q so that this routine can give the Schur factorization +* of a matrix A which has been reduced to the Hessenberg form H +* by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T. +* +* Arguments +* ========= +* +* JOB (input) CHARACTER*1 +* = 'E': compute eigenvalues only; +* = 'S': compute eigenvalues and the Schur form T. +* +* COMPZ (input) CHARACTER*1 +* = 'N': no Schur vectors are computed; +* = 'I': Z is initialized to the unit matrix and the matrix Z +* of Schur vectors of H is returned; +* = 'V': Z must contain an orthogonal matrix Q on entry, and +* the product Q*Z is returned. +* +* N (input) INTEGER +* The order of the matrix H. N .GE. 0. +* +* ILO (input) INTEGER +* IHI (input) INTEGER +* It is assumed that H is already upper triangular in rows +* and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally +* set by a previous call to DGEBAL, and then passed to DGEHRD +* when the matrix output by DGEBAL is reduced to Hessenberg +* form. Otherwise ILO and IHI should be set to 1 and N +* respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N. +* If N = 0, then ILO = 1 and IHI = 0. +* +* H (input/output) DOUBLE PRECISION array, dimension (LDH,N) +* On entry, the upper Hessenberg matrix H. +* On exit, if INFO = 0 and JOB = 'S', then H contains the +* upper quasi-triangular matrix T from the Schur decomposition +* (the Schur form); 2-by-2 diagonal blocks (corresponding to +* complex conjugate pairs of eigenvalues) are returned in +* standard form, with H(i,i) = H(i+1,i+1) and +* H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and JOB = 'E', the +* contents of H are unspecified on exit. (The output value of +* H when INFO.GT.0 is given under the description of INFO +* below.) +* +* Unlike earlier versions of DHSEQR, this subroutine may +* explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1 +* or j = IHI+1, IHI+2, ... N. +* +* LDH (input) INTEGER +* The leading dimension of the array H. LDH .GE. max(1,N). +* +* WR (output) DOUBLE PRECISION array, dimension (N) +* WI (output) DOUBLE PRECISION array, dimension (N) +* The real and imaginary parts, respectively, of the computed +* eigenvalues. If two eigenvalues are computed as a complex +* conjugate pair, they are stored in consecutive elements of +* WR and WI, say the i-th and (i+1)th, with WI(i) .GT. 0 and +* WI(i+1) .LT. 0. If JOB = 'S', the eigenvalues are stored in +* the same order as on the diagonal of the Schur form returned +* in H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 +* diagonal block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and +* WI(i+1) = -WI(i). +* +* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N) +* If COMPZ = 'N', Z is not referenced. +* If COMPZ = 'I', on entry Z need not be set and on exit, +* if INFO = 0, Z contains the orthogonal matrix Z of the Schur +* vectors of H. If COMPZ = 'V', on entry Z must contain an +* N-by-N matrix Q, which is assumed to be equal to the unit +* matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit, +* if INFO = 0, Z contains Q*Z. +* Normally Q is the orthogonal matrix generated by DORGHR +* after the call to DGEHRD which formed the Hessenberg matrix +* H. (The output value of Z when INFO.GT.0 is given under +* the description of INFO below.) +* +* LDZ (input) INTEGER +* The leading dimension of the array Z. if COMPZ = 'I' or +* COMPZ = 'V', then LDZ.GE.MAX(1,N). Otherwize, LDZ.GE.1. +* +* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) +* On exit, if INFO = 0, WORK(1) returns an estimate of +* the optimal value for LWORK. +* +* LWORK (input) INTEGER +* The dimension of the array WORK. LWORK .GE. max(1,N) +* is sufficient, but LWORK typically as large as 6*N may +* be required for optimal performance. A workspace query +* to determine the optimal workspace size is recommended. +* +* If LWORK = -1, then DHSEQR does a workspace query. +* In this case, DHSEQR checks the input parameters and +* estimates the optimal workspace size for the given +* values of N, ILO and IHI. The estimate is returned +* in WORK(1). No error message related to LWORK is +* issued by XERBLA. Neither H nor Z are accessed. +* +* +* INFO (output) INTEGER +* = 0: successful exit +* .LT. 0: if INFO = -i, the i-th argument had an illegal +* value +* .GT. 0: if INFO = i, DHSEQR failed to compute all of +* the eigenvalues. Elements 1:ilo-1 and i+1:n of WR +* and WI contain those eigenvalues which have been +* successfully computed. (Failures are rare.) +* +* If INFO .GT. 0 and JOB = 'E', then on exit, the +* remaining unconverged eigenvalues are the eigen- +* values of the upper Hessenberg matrix rows and +* columns ILO through INFO of the final, output +* value of H. +* +* If INFO .GT. 0 and JOB = 'S', then on exit +* +* (*) (initial value of H)*U = U*(final value of H) +* +* where U is an orthogonal matrix. The final +* value of H is upper Hessenberg and quasi-triangular +* in rows and columns INFO+1 through IHI. +* +* If INFO .GT. 0 and COMPZ = 'V', then on exit +* +* (final value of Z) = (initial value of Z)*U +* +* where U is the orthogonal matrix in (*) (regard- +* less of the value of JOB.) +* +* If INFO .GT. 0 and COMPZ = 'I', then on exit +* (final value of Z) = U +* where U is the orthogonal matrix in (*) (regard- +* less of the value of JOB.) +* +* If INFO .GT. 0 and COMPZ = 'N', then Z is not +* accessed. +* +* ================================================================ +* Default values supplied by +* ILAENV(ISPEC,'DHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK). +* It is suggested that these defaults be adjusted in order +* to attain best performance in each particular +* computational environment. +* +* ISPEC=1: The DLAHQR vs DLAQR0 crossover point. +* Default: 75. (Must be at least 11.) +* +* ISPEC=2: Recommended deflation window size. +* This depends on ILO, IHI and NS. NS is the +* number of simultaneous shifts returned +* by ILAENV(ISPEC=4). (See ISPEC=4 below.) +* The default for (IHI-ILO+1).LE.500 is NS. +* The default for (IHI-ILO+1).GT.500 is 3*NS/2. +* +* ISPEC=3: Nibble crossover point. (See ILAENV for +* details.) Default: 14% of deflation window +* size. +* +* ISPEC=4: Number of simultaneous shifts, NS, in +* a multi-shift QR iteration. +* +* If IHI-ILO+1 is ... +* +* greater than ...but less ... the +* or equal to ... than default is +* +* 1 30 NS - 2(+) +* 30 60 NS - 4(+) +* 60 150 NS = 10(+) +* 150 590 NS = ** +* 590 3000 NS = 64 +* 3000 6000 NS = 128 +* 6000 infinity NS = 256 +* +* (+) By default some or all matrices of this order +* are passed to the implicit double shift routine +* DLAHQR and NS is ignored. See ISPEC=1 above +* and comments in IPARM for details. +* +* The asterisks (**) indicate an ad-hoc +* function of N increasing from 10 to 64. +* +* ISPEC=5: Select structured matrix multiply. +* (See ILAENV for details.) Default: 3. +* +* ================================================================ +* Based on contributions by +* Karen Braman and Ralph Byers, Department of Mathematics, +* University of Kansas, USA +* +* ================================================================ +* References: +* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR +* Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 +* Performance, SIAM Journal of Matrix Analysis, volume 23, pages +* 929--947, 2002. +* +* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR +* Algorithm Part II: Aggressive Early Deflation, SIAM Journal +* of Matrix Analysis, volume 23, pages 948--973, 2002. +* +* ================================================================ +* .. Parameters .. +* +* ==== Matrices of order NTINY or smaller must be processed by +* . DLAHQR because of insufficient subdiagonal scratch space. +* . (This is a hard limit.) ==== +* +* ==== NL allocates some local workspace to help small matrices +* . through a rare DLAHQR failure. NL .GT. NTINY = 11 is +* . required and NL .LE. NMIN = ILAENV(ISPEC=1,...) is recom- +* . mended. (The default value of NMIN is 75.) Using NL = 49 +* . allows up to six simultaneous shifts and a 16-by-16 +* . deflation window. ==== +* + INTEGER NTINY + PARAMETER ( NTINY = 11 ) + INTEGER NL + PARAMETER ( NL = 49 ) + DOUBLE PRECISION ZERO, ONE + PARAMETER ( ZERO = 0.0d0, ONE = 1.0d0 ) +* .. +* .. Local Arrays .. + DOUBLE PRECISION HL( NL, NL ), WORKL( NL ) +* .. +* .. Local Scalars .. + INTEGER I, KBOT, NMIN + LOGICAL INITZ, LQUERY, WANTT, WANTZ +* .. +* .. External Functions .. + INTEGER ILAENV + LOGICAL LSAME + EXTERNAL ILAENV, LSAME +* .. +* .. External Subroutines .. + EXTERNAL DLACPY, DLAHQR, DLAQR0, DLASET, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC DBLE, MAX, MIN +* .. +* .. Executable Statements .. +* +* ==== Decode and check the input parameters. ==== +* + WANTT = LSAME( JOB, 'S' ) + INITZ = LSAME( COMPZ, 'I' ) + WANTZ = INITZ .OR. LSAME( COMPZ, 'V' ) + WORK( 1 ) = DBLE( MAX( 1, N ) ) + LQUERY = LWORK.EQ.-1 +* + INFO = 0 + IF( .NOT.LSAME( JOB, 'E' ) .AND. .NOT.WANTT ) THEN + INFO = -1 + ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN + INFO = -2 + ELSE IF( N.LT.0 ) THEN + INFO = -3 + ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN + INFO = -4 + ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN + INFO = -5 + ELSE IF( LDH.LT.MAX( 1, N ) ) THEN + INFO = -7 + ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.MAX( 1, N ) ) ) THEN + INFO = -11 + ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN + INFO = -13 + END IF +* + IF( INFO.NE.0 ) THEN +* +* ==== Quick return in case of invalid argument. ==== +* + CALL XERBLA( 'DHSEQR', -INFO ) + RETURN +* + ELSE IF( N.EQ.0 ) THEN +* +* ==== Quick return in case N = 0; nothing to do. ==== +* + RETURN +* + ELSE IF( LQUERY ) THEN +* +* ==== Quick return in case of a workspace query ==== +* + CALL DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO, + $ IHI, Z, LDZ, WORK, LWORK, INFO ) +* ==== Ensure reported workspace size is backward-compatible with +* . previous LAPACK versions. ==== + WORK( 1 ) = MAX( DBLE( MAX( 1, N ) ), WORK( 1 ) ) + RETURN +* + ELSE +* +* ==== copy eigenvalues isolated by DGEBAL ==== +* + DO 10 I = 1, ILO - 1 + WR( I ) = H( I, I ) + WI( I ) = ZERO + 10 CONTINUE + DO 20 I = IHI + 1, N + WR( I ) = H( I, I ) + WI( I ) = ZERO + 20 CONTINUE +* +* ==== Initialize Z, if requested ==== +* + IF( INITZ ) + $ CALL DLASET( 'A', N, N, ZERO, ONE, Z, LDZ ) +* +* ==== Quick return if possible ==== +* + IF( ILO.EQ.IHI ) THEN + WR( ILO ) = H( ILO, ILO ) + WI( ILO ) = ZERO + RETURN + END IF +* +* ==== DLAHQR/DLAQR0 crossover point ==== +* + NMIN = ILAENV( 12, 'DHSEQR', JOB( : 1 ) // COMPZ( : 1 ), N, + $ ILO, IHI, LWORK ) + NMIN = MAX( NTINY, NMIN ) +* +* ==== DLAQR0 for big matrices; DLAHQR for small ones ==== +* + IF( N.GT.NMIN ) THEN + CALL DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO, + $ IHI, Z, LDZ, WORK, LWORK, INFO ) + ELSE +* +* ==== Small matrix ==== +* + CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO, + $ IHI, Z, LDZ, INFO ) +* + IF( INFO.GT.0 ) THEN +* +* ==== A rare DLAHQR failure! DLAQR0 sometimes succeeds +* . when DLAHQR fails. ==== +* + KBOT = INFO +* + IF( N.GE.NL ) THEN +* +* ==== Larger matrices have enough subdiagonal scratch +* . space to call DLAQR0 directly. ==== +* + CALL DLAQR0( WANTT, WANTZ, N, ILO, KBOT, H, LDH, WR, + $ WI, ILO, IHI, Z, LDZ, WORK, LWORK, INFO ) +* + ELSE +* +* ==== Tiny matrices don't have enough subdiagonal +* . scratch space to benefit from DLAQR0. Hence, +* . tiny matrices must be copied into a larger +* . array before calling DLAQR0. ==== +* + CALL DLACPY( 'A', N, N, H, LDH, HL, NL ) + HL( N+1, N ) = ZERO + CALL DLASET( 'A', NL, NL-N, ZERO, ZERO, HL( 1, N+1 ), + $ NL ) + CALL DLAQR0( WANTT, WANTZ, NL, ILO, KBOT, HL, NL, WR, + $ WI, ILO, IHI, Z, LDZ, WORKL, NL, INFO ) + IF( WANTT .OR. INFO.NE.0 ) + $ CALL DLACPY( 'A', N, N, HL, NL, H, LDH ) + END IF + END IF + END IF +* +* ==== Clear out the trash, if necessary. ==== +* + IF( ( WANTT .OR. INFO.NE.0 ) .AND. N.GT.2 ) + $ CALL DLASET( 'L', N-2, N-2, ZERO, ZERO, H( 3, 1 ), LDH ) +* +* ==== Ensure reported workspace size is backward-compatible with +* . previous LAPACK versions. ==== +* + WORK( 1 ) = MAX( DBLE( MAX( 1, N ) ), WORK( 1 ) ) + END IF +* +* ==== End of DHSEQR ==== +* + END |