diff options
author | Ankit Raj | 2017-06-21 10:26:59 +0530 |
---|---|---|
committer | Ankit Raj | 2017-06-21 10:26:59 +0530 |
commit | a555820564d9f2e95ca8c97871339d3a5a2081c3 (patch) | |
tree | adb074b66a8e6750209880e6932305ce0a94c8bf /2.3-1/src/fortran/lapack/dggev.f | |
download | Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.gz Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.bz2 Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.zip |
Updated Scilab2C
Diffstat (limited to '2.3-1/src/fortran/lapack/dggev.f')
-rw-r--r-- | 2.3-1/src/fortran/lapack/dggev.f | 489 |
1 files changed, 489 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dggev.f b/2.3-1/src/fortran/lapack/dggev.f new file mode 100644 index 00000000..4a204c33 --- /dev/null +++ b/2.3-1/src/fortran/lapack/dggev.f @@ -0,0 +1,489 @@ + SUBROUTINE DGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI, + $ BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO ) +* +* -- LAPACK driver routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + CHARACTER JOBVL, JOBVR + INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N +* .. +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ), + $ B( LDB, * ), BETA( * ), VL( LDVL, * ), + $ VR( LDVR, * ), WORK( * ) +* .. +* +* Purpose +* ======= +* +* DGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B) +* the generalized eigenvalues, and optionally, the left and/or right +* generalized eigenvectors. +* +* A generalized eigenvalue for a pair of matrices (A,B) is a scalar +* lambda or a ratio alpha/beta = lambda, such that A - lambda*B is +* singular. It is usually represented as the pair (alpha,beta), as +* there is a reasonable interpretation for beta=0, and even for both +* being zero. +* +* The right eigenvector v(j) corresponding to the eigenvalue lambda(j) +* of (A,B) satisfies +* +* A * v(j) = lambda(j) * B * v(j). +* +* The left eigenvector u(j) corresponding to the eigenvalue lambda(j) +* of (A,B) satisfies +* +* u(j)**H * A = lambda(j) * u(j)**H * B . +* +* where u(j)**H is the conjugate-transpose of u(j). +* +* +* Arguments +* ========= +* +* JOBVL (input) CHARACTER*1 +* = 'N': do not compute the left generalized eigenvectors; +* = 'V': compute the left generalized eigenvectors. +* +* JOBVR (input) CHARACTER*1 +* = 'N': do not compute the right generalized eigenvectors; +* = 'V': compute the right generalized eigenvectors. +* +* N (input) INTEGER +* The order of the matrices A, B, VL, and VR. N >= 0. +* +* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) +* On entry, the matrix A in the pair (A,B). +* On exit, A has been overwritten. +* +* LDA (input) INTEGER +* The leading dimension of A. LDA >= max(1,N). +* +* B (input/output) DOUBLE PRECISION array, dimension (LDB, N) +* On entry, the matrix B in the pair (A,B). +* On exit, B has been overwritten. +* +* LDB (input) INTEGER +* The leading dimension of B. LDB >= max(1,N). +* +* ALPHAR (output) DOUBLE PRECISION array, dimension (N) +* ALPHAI (output) DOUBLE PRECISION array, dimension (N) +* BETA (output) DOUBLE PRECISION array, dimension (N) +* On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will +* be the generalized eigenvalues. If ALPHAI(j) is zero, then +* the j-th eigenvalue is real; if positive, then the j-th and +* (j+1)-st eigenvalues are a complex conjugate pair, with +* ALPHAI(j+1) negative. +* +* Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) +* may easily over- or underflow, and BETA(j) may even be zero. +* Thus, the user should avoid naively computing the ratio +* alpha/beta. However, ALPHAR and ALPHAI will be always less +* than and usually comparable with norm(A) in magnitude, and +* BETA always less than and usually comparable with norm(B). +* +* VL (output) DOUBLE PRECISION array, dimension (LDVL,N) +* If JOBVL = 'V', the left eigenvectors u(j) are stored one +* after another in the columns of VL, in the same order as +* their eigenvalues. If the j-th eigenvalue is real, then +* u(j) = VL(:,j), the j-th column of VL. If the j-th and +* (j+1)-th eigenvalues form a complex conjugate pair, then +* u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). +* Each eigenvector is scaled so the largest component has +* abs(real part)+abs(imag. part)=1. +* Not referenced if JOBVL = 'N'. +* +* LDVL (input) INTEGER +* The leading dimension of the matrix VL. LDVL >= 1, and +* if JOBVL = 'V', LDVL >= N. +* +* VR (output) DOUBLE PRECISION array, dimension (LDVR,N) +* If JOBVR = 'V', the right eigenvectors v(j) are stored one +* after another in the columns of VR, in the same order as +* their eigenvalues. If the j-th eigenvalue is real, then +* v(j) = VR(:,j), the j-th column of VR. If the j-th and +* (j+1)-th eigenvalues form a complex conjugate pair, then +* v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). +* Each eigenvector is scaled so the largest component has +* abs(real part)+abs(imag. part)=1. +* Not referenced if JOBVR = 'N'. +* +* LDVR (input) INTEGER +* The leading dimension of the matrix VR. LDVR >= 1, and +* if JOBVR = 'V', LDVR >= N. +* +* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. +* +* LWORK (input) INTEGER +* The dimension of the array WORK. LWORK >= max(1,8*N). +* For good performance, LWORK must generally be larger. +* +* If LWORK = -1, then a workspace query is assumed; the routine +* only calculates the optimal size of the WORK array, returns +* this value as the first entry of the WORK array, and no error +* message related to LWORK is issued by XERBLA. +* +* INFO (output) INTEGER +* = 0: successful exit +* < 0: if INFO = -i, the i-th argument had an illegal value. +* = 1,...,N: +* The QZ iteration failed. No eigenvectors have been +* calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) +* should be correct for j=INFO+1,...,N. +* > N: =N+1: other than QZ iteration failed in DHGEQZ. +* =N+2: error return from DTGEVC. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE + PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) +* .. +* .. Local Scalars .. + LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY + CHARACTER CHTEMP + INTEGER ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO, + $ IN, IRIGHT, IROWS, ITAU, IWRK, JC, JR, MAXWRK, + $ MINWRK + DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, + $ SMLNUM, TEMP +* .. +* .. Local Arrays .. + LOGICAL LDUMMA( 1 ) +* .. +* .. External Subroutines .. + EXTERNAL DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD, + $ DLACPY,DLASCL, DLASET, DORGQR, DORMQR, DTGEVC, + $ XERBLA +* .. +* .. External Functions .. + LOGICAL LSAME + INTEGER ILAENV + DOUBLE PRECISION DLAMCH, DLANGE + EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX, SQRT +* .. +* .. Executable Statements .. +* +* Decode the input arguments +* + IF( LSAME( JOBVL, 'N' ) ) THEN + IJOBVL = 1 + ILVL = .FALSE. + ELSE IF( LSAME( JOBVL, 'V' ) ) THEN + IJOBVL = 2 + ILVL = .TRUE. + ELSE + IJOBVL = -1 + ILVL = .FALSE. + END IF +* + IF( LSAME( JOBVR, 'N' ) ) THEN + IJOBVR = 1 + ILVR = .FALSE. + ELSE IF( LSAME( JOBVR, 'V' ) ) THEN + IJOBVR = 2 + ILVR = .TRUE. + ELSE + IJOBVR = -1 + ILVR = .FALSE. + END IF + ILV = ILVL .OR. ILVR +* +* Test the input arguments +* + INFO = 0 + LQUERY = ( LWORK.EQ.-1 ) + IF( IJOBVL.LE.0 ) THEN + INFO = -1 + ELSE IF( IJOBVR.LE.0 ) THEN + INFO = -2 + ELSE IF( N.LT.0 ) THEN + INFO = -3 + ELSE IF( LDA.LT.MAX( 1, N ) ) THEN + INFO = -5 + ELSE IF( LDB.LT.MAX( 1, N ) ) THEN + INFO = -7 + ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN + INFO = -12 + ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN + INFO = -14 + END IF +* +* Compute workspace +* (Note: Comments in the code beginning "Workspace:" describe the +* minimal amount of workspace needed at that point in the code, +* as well as the preferred amount for good performance. +* NB refers to the optimal block size for the immediately +* following subroutine, as returned by ILAENV. The workspace is +* computed assuming ILO = 1 and IHI = N, the worst case.) +* + IF( INFO.EQ.0 ) THEN + MINWRK = MAX( 1, 8*N ) + MAXWRK = MAX( 1, N*( 7 + + $ ILAENV( 1, 'DGEQRF', ' ', N, 1, N, 0 ) ) ) + MAXWRK = MAX( MAXWRK, N*( 7 + + $ ILAENV( 1, 'DORMQR', ' ', N, 1, N, 0 ) ) ) + IF( ILVL ) THEN + MAXWRK = MAX( MAXWRK, N*( 7 + + $ ILAENV( 1, 'DORGQR', ' ', N, 1, N, -1 ) ) ) + END IF + WORK( 1 ) = MAXWRK +* + IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) + $ INFO = -16 + END IF +* + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DGGEV ', -INFO ) + RETURN + ELSE IF( LQUERY ) THEN + RETURN + END IF +* +* Quick return if possible +* + IF( N.EQ.0 ) + $ RETURN +* +* Get machine constants +* + EPS = DLAMCH( 'P' ) + SMLNUM = DLAMCH( 'S' ) + BIGNUM = ONE / SMLNUM + CALL DLABAD( SMLNUM, BIGNUM ) + SMLNUM = SQRT( SMLNUM ) / EPS + BIGNUM = ONE / SMLNUM +* +* Scale A if max element outside range [SMLNUM,BIGNUM] +* + ANRM = DLANGE( 'M', N, N, A, LDA, WORK ) + ILASCL = .FALSE. + IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN + ANRMTO = SMLNUM + ILASCL = .TRUE. + ELSE IF( ANRM.GT.BIGNUM ) THEN + ANRMTO = BIGNUM + ILASCL = .TRUE. + END IF + IF( ILASCL ) + $ CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR ) +* +* Scale B if max element outside range [SMLNUM,BIGNUM] +* + BNRM = DLANGE( 'M', N, N, B, LDB, WORK ) + ILBSCL = .FALSE. + IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN + BNRMTO = SMLNUM + ILBSCL = .TRUE. + ELSE IF( BNRM.GT.BIGNUM ) THEN + BNRMTO = BIGNUM + ILBSCL = .TRUE. + END IF + IF( ILBSCL ) + $ CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR ) +* +* Permute the matrices A, B to isolate eigenvalues if possible +* (Workspace: need 6*N) +* + ILEFT = 1 + IRIGHT = N + 1 + IWRK = IRIGHT + N + CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ), + $ WORK( IRIGHT ), WORK( IWRK ), IERR ) +* +* Reduce B to triangular form (QR decomposition of B) +* (Workspace: need N, prefer N*NB) +* + IROWS = IHI + 1 - ILO + IF( ILV ) THEN + ICOLS = N + 1 - ILO + ELSE + ICOLS = IROWS + END IF + ITAU = IWRK + IWRK = ITAU + IROWS + CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ), + $ WORK( IWRK ), LWORK+1-IWRK, IERR ) +* +* Apply the orthogonal transformation to matrix A +* (Workspace: need N, prefer N*NB) +* + CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB, + $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ), + $ LWORK+1-IWRK, IERR ) +* +* Initialize VL +* (Workspace: need N, prefer N*NB) +* + IF( ILVL ) THEN + CALL DLASET( 'Full', N, N, ZERO, ONE, VL, LDVL ) + IF( IROWS.GT.1 ) THEN + CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB, + $ VL( ILO+1, ILO ), LDVL ) + END IF + CALL DORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL, + $ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR ) + END IF +* +* Initialize VR +* + IF( ILVR ) + $ CALL DLASET( 'Full', N, N, ZERO, ONE, VR, LDVR ) +* +* Reduce to generalized Hessenberg form +* (Workspace: none needed) +* + IF( ILV ) THEN +* +* Eigenvectors requested -- work on whole matrix. +* + CALL DGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL, + $ LDVL, VR, LDVR, IERR ) + ELSE + CALL DGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA, + $ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR ) + END IF +* +* Perform QZ algorithm (Compute eigenvalues, and optionally, the +* Schur forms and Schur vectors) +* (Workspace: need N) +* + IWRK = ITAU + IF( ILV ) THEN + CHTEMP = 'S' + ELSE + CHTEMP = 'E' + END IF + CALL DHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, + $ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, + $ WORK( IWRK ), LWORK+1-IWRK, IERR ) + IF( IERR.NE.0 ) THEN + IF( IERR.GT.0 .AND. IERR.LE.N ) THEN + INFO = IERR + ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN + INFO = IERR - N + ELSE + INFO = N + 1 + END IF + GO TO 110 + END IF +* +* Compute Eigenvectors +* (Workspace: need 6*N) +* + IF( ILV ) THEN + IF( ILVL ) THEN + IF( ILVR ) THEN + CHTEMP = 'B' + ELSE + CHTEMP = 'L' + END IF + ELSE + CHTEMP = 'R' + END IF + CALL DTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL, + $ VR, LDVR, N, IN, WORK( IWRK ), IERR ) + IF( IERR.NE.0 ) THEN + INFO = N + 2 + GO TO 110 + END IF +* +* Undo balancing on VL and VR and normalization +* (Workspace: none needed) +* + IF( ILVL ) THEN + CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ), + $ WORK( IRIGHT ), N, VL, LDVL, IERR ) + DO 50 JC = 1, N + IF( ALPHAI( JC ).LT.ZERO ) + $ GO TO 50 + TEMP = ZERO + IF( ALPHAI( JC ).EQ.ZERO ) THEN + DO 10 JR = 1, N + TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) ) + 10 CONTINUE + ELSE + DO 20 JR = 1, N + TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+ + $ ABS( VL( JR, JC+1 ) ) ) + 20 CONTINUE + END IF + IF( TEMP.LT.SMLNUM ) + $ GO TO 50 + TEMP = ONE / TEMP + IF( ALPHAI( JC ).EQ.ZERO ) THEN + DO 30 JR = 1, N + VL( JR, JC ) = VL( JR, JC )*TEMP + 30 CONTINUE + ELSE + DO 40 JR = 1, N + VL( JR, JC ) = VL( JR, JC )*TEMP + VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP + 40 CONTINUE + END IF + 50 CONTINUE + END IF + IF( ILVR ) THEN + CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ), + $ WORK( IRIGHT ), N, VR, LDVR, IERR ) + DO 100 JC = 1, N + IF( ALPHAI( JC ).LT.ZERO ) + $ GO TO 100 + TEMP = ZERO + IF( ALPHAI( JC ).EQ.ZERO ) THEN + DO 60 JR = 1, N + TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) ) + 60 CONTINUE + ELSE + DO 70 JR = 1, N + TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+ + $ ABS( VR( JR, JC+1 ) ) ) + 70 CONTINUE + END IF + IF( TEMP.LT.SMLNUM ) + $ GO TO 100 + TEMP = ONE / TEMP + IF( ALPHAI( JC ).EQ.ZERO ) THEN + DO 80 JR = 1, N + VR( JR, JC ) = VR( JR, JC )*TEMP + 80 CONTINUE + ELSE + DO 90 JR = 1, N + VR( JR, JC ) = VR( JR, JC )*TEMP + VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP + 90 CONTINUE + END IF + 100 CONTINUE + END IF +* +* End of eigenvector calculation +* + END IF +* +* Undo scaling if necessary +* + IF( ILASCL ) THEN + CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR ) + CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR ) + END IF +* + IF( ILBSCL ) THEN + CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR ) + END IF +* + 110 CONTINUE +* + WORK( 1 ) = MAXWRK +* + RETURN +* +* End of DGGEV +* + END |