summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dgetri.f
diff options
context:
space:
mode:
authorSiddhesh Wani2015-05-25 14:46:31 +0530
committerSiddhesh Wani2015-05-25 14:46:31 +0530
commit6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26 (patch)
tree1b7bd89fdcfd01715713d8a15db471dc75a96bbf /2.3-1/src/fortran/lapack/dgetri.f
downloadScilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.gz
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.bz2
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.zip
Original Version
Diffstat (limited to '2.3-1/src/fortran/lapack/dgetri.f')
-rw-r--r--2.3-1/src/fortran/lapack/dgetri.f192
1 files changed, 192 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dgetri.f b/2.3-1/src/fortran/lapack/dgetri.f
new file mode 100644
index 00000000..9f1c1182
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dgetri.f
@@ -0,0 +1,192 @@
+ SUBROUTINE DGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LWORK, N
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ DOUBLE PRECISION A( LDA, * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DGETRI computes the inverse of a matrix using the LU factorization
+* computed by DGETRF.
+*
+* This method inverts U and then computes inv(A) by solving the system
+* inv(A)*L = inv(U) for inv(A).
+*
+* Arguments
+* =========
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+* On entry, the factors L and U from the factorization
+* A = P*L*U as computed by DGETRF.
+* On exit, if INFO = 0, the inverse of the original matrix A.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* IPIV (input) INTEGER array, dimension (N)
+* The pivot indices from DGETRF; for 1<=i<=N, row i of the
+* matrix was interchanged with row IPIV(i).
+*
+* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+* On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK. LWORK >= max(1,N).
+* For optimal performance LWORK >= N*NB, where NB is
+* the optimal blocksize returned by ILAENV.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+* > 0: if INFO = i, U(i,i) is exactly zero; the matrix is
+* singular and its inverse could not be computed.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY
+ INTEGER I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB,
+ $ NBMIN, NN
+* ..
+* .. External Functions ..
+ INTEGER ILAENV
+ EXTERNAL ILAENV
+* ..
+* .. External Subroutines ..
+ EXTERNAL DGEMM, DGEMV, DSWAP, DTRSM, DTRTRI, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ NB = ILAENV( 1, 'DGETRI', ' ', N, -1, -1, -1 )
+ LWKOPT = N*NB
+ WORK( 1 ) = LWKOPT
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( N.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -3
+ ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
+ INFO = -6
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DGETRI', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+* Form inv(U). If INFO > 0 from DTRTRI, then U is singular,
+* and the inverse is not computed.
+*
+ CALL DTRTRI( 'Upper', 'Non-unit', N, A, LDA, INFO )
+ IF( INFO.GT.0 )
+ $ RETURN
+*
+ NBMIN = 2
+ LDWORK = N
+ IF( NB.GT.1 .AND. NB.LT.N ) THEN
+ IWS = MAX( LDWORK*NB, 1 )
+ IF( LWORK.LT.IWS ) THEN
+ NB = LWORK / LDWORK
+ NBMIN = MAX( 2, ILAENV( 2, 'DGETRI', ' ', N, -1, -1, -1 ) )
+ END IF
+ ELSE
+ IWS = N
+ END IF
+*
+* Solve the equation inv(A)*L = inv(U) for inv(A).
+*
+ IF( NB.LT.NBMIN .OR. NB.GE.N ) THEN
+*
+* Use unblocked code.
+*
+ DO 20 J = N, 1, -1
+*
+* Copy current column of L to WORK and replace with zeros.
+*
+ DO 10 I = J + 1, N
+ WORK( I ) = A( I, J )
+ A( I, J ) = ZERO
+ 10 CONTINUE
+*
+* Compute current column of inv(A).
+*
+ IF( J.LT.N )
+ $ CALL DGEMV( 'No transpose', N, N-J, -ONE, A( 1, J+1 ),
+ $ LDA, WORK( J+1 ), 1, ONE, A( 1, J ), 1 )
+ 20 CONTINUE
+ ELSE
+*
+* Use blocked code.
+*
+ NN = ( ( N-1 ) / NB )*NB + 1
+ DO 50 J = NN, 1, -NB
+ JB = MIN( NB, N-J+1 )
+*
+* Copy current block column of L to WORK and replace with
+* zeros.
+*
+ DO 40 JJ = J, J + JB - 1
+ DO 30 I = JJ + 1, N
+ WORK( I+( JJ-J )*LDWORK ) = A( I, JJ )
+ A( I, JJ ) = ZERO
+ 30 CONTINUE
+ 40 CONTINUE
+*
+* Compute current block column of inv(A).
+*
+ IF( J+JB.LE.N )
+ $ CALL DGEMM( 'No transpose', 'No transpose', N, JB,
+ $ N-J-JB+1, -ONE, A( 1, J+JB ), LDA,
+ $ WORK( J+JB ), LDWORK, ONE, A( 1, J ), LDA )
+ CALL DTRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB,
+ $ ONE, WORK( J ), LDWORK, A( 1, J ), LDA )
+ 50 CONTINUE
+ END IF
+*
+* Apply column interchanges.
+*
+ DO 60 J = N - 1, 1, -1
+ JP = IPIV( J )
+ IF( JP.NE.J )
+ $ CALL DSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 )
+ 60 CONTINUE
+*
+ WORK( 1 ) = IWS
+ RETURN
+*
+* End of DGETRI
+*
+ END