summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dgeqlf.f
diff options
context:
space:
mode:
authorSandeep Gupta2017-06-18 23:55:40 +0530
committerSandeep Gupta2017-06-18 23:55:40 +0530
commitb43eccd4cffed5bd1017c5821524fb6e49202f78 (patch)
tree4c53d798252cbeae9bcf7dc9604524b20bb10f27 /2.3-1/src/fortran/lapack/dgeqlf.f
downloadScilab2C-b43eccd4cffed5bd1017c5821524fb6e49202f78.tar.gz
Scilab2C-b43eccd4cffed5bd1017c5821524fb6e49202f78.tar.bz2
Scilab2C-b43eccd4cffed5bd1017c5821524fb6e49202f78.zip
First commit
Diffstat (limited to '2.3-1/src/fortran/lapack/dgeqlf.f')
-rw-r--r--2.3-1/src/fortran/lapack/dgeqlf.f213
1 files changed, 213 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dgeqlf.f b/2.3-1/src/fortran/lapack/dgeqlf.f
new file mode 100644
index 00000000..ec293574
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dgeqlf.f
@@ -0,0 +1,213 @@
+ SUBROUTINE DGEQLF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LWORK, M, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DGEQLF computes a QL factorization of a real M-by-N matrix A:
+* A = Q * L.
+*
+* Arguments
+* =========
+*
+* M (input) INTEGER
+* The number of rows of the matrix A. M >= 0.
+*
+* N (input) INTEGER
+* The number of columns of the matrix A. N >= 0.
+*
+* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+* On entry, the M-by-N matrix A.
+* On exit,
+* if m >= n, the lower triangle of the subarray
+* A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L;
+* if m <= n, the elements on and below the (n-m)-th
+* superdiagonal contain the M-by-N lower trapezoidal matrix L;
+* the remaining elements, with the array TAU, represent the
+* orthogonal matrix Q as a product of elementary reflectors
+* (see Further Details).
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,M).
+*
+* TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
+* The scalar factors of the elementary reflectors (see Further
+* Details).
+*
+* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK. LWORK >= max(1,N).
+* For optimum performance LWORK >= N*NB, where NB is the
+* optimal blocksize.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+*
+* Further Details
+* ===============
+*
+* The matrix Q is represented as a product of elementary reflectors
+*
+* Q = H(k) . . . H(2) H(1), where k = min(m,n).
+*
+* Each H(i) has the form
+*
+* H(i) = I - tau * v * v'
+*
+* where tau is a real scalar, and v is a real vector with
+* v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
+* A(1:m-k+i-1,n-k+i), and tau in TAU(i).
+*
+* =====================================================================
+*
+* .. Local Scalars ..
+ LOGICAL LQUERY
+ INTEGER I, IB, IINFO, IWS, K, KI, KK, LDWORK, LWKOPT,
+ $ MU, NB, NBMIN, NU, NX
+* ..
+* .. External Subroutines ..
+ EXTERNAL DGEQL2, DLARFB, DLARFT, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. External Functions ..
+ INTEGER ILAENV
+ EXTERNAL ILAENV
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ INFO = 0
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -4
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+ K = MIN( M, N )
+ IF( K.EQ.0 ) THEN
+ LWKOPT = 1
+ ELSE
+ NB = ILAENV( 1, 'DGEQLF', ' ', M, N, -1, -1 )
+ LWKOPT = N*NB
+ END IF
+ WORK( 1 ) = LWKOPT
+*
+ IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
+ INFO = -7
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DGEQLF', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( K.EQ.0 ) THEN
+ RETURN
+ END IF
+*
+ NBMIN = 2
+ NX = 1
+ IWS = N
+ IF( NB.GT.1 .AND. NB.LT.K ) THEN
+*
+* Determine when to cross over from blocked to unblocked code.
+*
+ NX = MAX( 0, ILAENV( 3, 'DGEQLF', ' ', M, N, -1, -1 ) )
+ IF( NX.LT.K ) THEN
+*
+* Determine if workspace is large enough for blocked code.
+*
+ LDWORK = N
+ IWS = LDWORK*NB
+ IF( LWORK.LT.IWS ) THEN
+*
+* Not enough workspace to use optimal NB: reduce NB and
+* determine the minimum value of NB.
+*
+ NB = LWORK / LDWORK
+ NBMIN = MAX( 2, ILAENV( 2, 'DGEQLF', ' ', M, N, -1,
+ $ -1 ) )
+ END IF
+ END IF
+ END IF
+*
+ IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
+*
+* Use blocked code initially.
+* The last kk columns are handled by the block method.
+*
+ KI = ( ( K-NX-1 ) / NB )*NB
+ KK = MIN( K, KI+NB )
+*
+ DO 10 I = K - KK + KI + 1, K - KK + 1, -NB
+ IB = MIN( K-I+1, NB )
+*
+* Compute the QL factorization of the current block
+* A(1:m-k+i+ib-1,n-k+i:n-k+i+ib-1)
+*
+ CALL DGEQL2( M-K+I+IB-1, IB, A( 1, N-K+I ), LDA, TAU( I ),
+ $ WORK, IINFO )
+ IF( N-K+I.GT.1 ) THEN
+*
+* Form the triangular factor of the block reflector
+* H = H(i+ib-1) . . . H(i+1) H(i)
+*
+ CALL DLARFT( 'Backward', 'Columnwise', M-K+I+IB-1, IB,
+ $ A( 1, N-K+I ), LDA, TAU( I ), WORK, LDWORK )
+*
+* Apply H' to A(1:m-k+i+ib-1,1:n-k+i-1) from the left
+*
+ CALL DLARFB( 'Left', 'Transpose', 'Backward',
+ $ 'Columnwise', M-K+I+IB-1, N-K+I-1, IB,
+ $ A( 1, N-K+I ), LDA, WORK, LDWORK, A, LDA,
+ $ WORK( IB+1 ), LDWORK )
+ END IF
+ 10 CONTINUE
+ MU = M - K + I + NB - 1
+ NU = N - K + I + NB - 1
+ ELSE
+ MU = M
+ NU = N
+ END IF
+*
+* Use unblocked code to factor the last or only block
+*
+ IF( MU.GT.0 .AND. NU.GT.0 )
+ $ CALL DGEQL2( MU, NU, A, LDA, TAU, WORK, IINFO )
+*
+ WORK( 1 ) = IWS
+ RETURN
+*
+* End of DGEQLF
+*
+ END