summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/blas/ztrsm.f
diff options
context:
space:
mode:
authorSiddhesh Wani2015-05-25 14:46:31 +0530
committerSiddhesh Wani2015-05-25 14:46:31 +0530
commit6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26 (patch)
tree1b7bd89fdcfd01715713d8a15db471dc75a96bbf /2.3-1/src/fortran/blas/ztrsm.f
downloadScilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.gz
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.bz2
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.zip
Original Version
Diffstat (limited to '2.3-1/src/fortran/blas/ztrsm.f')
-rw-r--r--2.3-1/src/fortran/blas/ztrsm.f414
1 files changed, 414 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/blas/ztrsm.f b/2.3-1/src/fortran/blas/ztrsm.f
new file mode 100644
index 00000000..e414ec66
--- /dev/null
+++ b/2.3-1/src/fortran/blas/ztrsm.f
@@ -0,0 +1,414 @@
+ SUBROUTINE ZTRSM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
+ $ B, LDB )
+* .. Scalar Arguments ..
+ CHARACTER*1 SIDE, UPLO, TRANSA, DIAG
+ INTEGER M, N, LDA, LDB
+ COMPLEX*16 ALPHA
+* .. Array Arguments ..
+ COMPLEX*16 A( LDA, * ), B( LDB, * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZTRSM solves one of the matrix equations
+*
+* op( A )*X = alpha*B, or X*op( A ) = alpha*B,
+*
+* where alpha is a scalar, X and B are m by n matrices, A is a unit, or
+* non-unit, upper or lower triangular matrix and op( A ) is one of
+*
+* op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ).
+*
+* The matrix X is overwritten on B.
+*
+* Parameters
+* ==========
+*
+* SIDE - CHARACTER*1.
+* On entry, SIDE specifies whether op( A ) appears on the left
+* or right of X as follows:
+*
+* SIDE = 'L' or 'l' op( A )*X = alpha*B.
+*
+* SIDE = 'R' or 'r' X*op( A ) = alpha*B.
+*
+* Unchanged on exit.
+*
+* UPLO - CHARACTER*1.
+* On entry, UPLO specifies whether the matrix A is an upper or
+* lower triangular matrix as follows:
+*
+* UPLO = 'U' or 'u' A is an upper triangular matrix.
+*
+* UPLO = 'L' or 'l' A is a lower triangular matrix.
+*
+* Unchanged on exit.
+*
+* TRANSA - CHARACTER*1.
+* On entry, TRANSA specifies the form of op( A ) to be used in
+* the matrix multiplication as follows:
+*
+* TRANSA = 'N' or 'n' op( A ) = A.
+*
+* TRANSA = 'T' or 't' op( A ) = A'.
+*
+* TRANSA = 'C' or 'c' op( A ) = conjg( A' ).
+*
+* Unchanged on exit.
+*
+* DIAG - CHARACTER*1.
+* On entry, DIAG specifies whether or not A is unit triangular
+* as follows:
+*
+* DIAG = 'U' or 'u' A is assumed to be unit triangular.
+*
+* DIAG = 'N' or 'n' A is not assumed to be unit
+* triangular.
+*
+* Unchanged on exit.
+*
+* M - INTEGER.
+* On entry, M specifies the number of rows of B. M must be at
+* least zero.
+* Unchanged on exit.
+*
+* N - INTEGER.
+* On entry, N specifies the number of columns of B. N must be
+* at least zero.
+* Unchanged on exit.
+*
+* ALPHA - COMPLEX*16 .
+* On entry, ALPHA specifies the scalar alpha. When alpha is
+* zero then A is not referenced and B need not be set before
+* entry.
+* Unchanged on exit.
+*
+* A - COMPLEX*16 array of DIMENSION ( LDA, k ), where k is m
+* when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
+* Before entry with UPLO = 'U' or 'u', the leading k by k
+* upper triangular part of the array A must contain the upper
+* triangular matrix and the strictly lower triangular part of
+* A is not referenced.
+* Before entry with UPLO = 'L' or 'l', the leading k by k
+* lower triangular part of the array A must contain the lower
+* triangular matrix and the strictly upper triangular part of
+* A is not referenced.
+* Note that when DIAG = 'U' or 'u', the diagonal elements of
+* A are not referenced either, but are assumed to be unity.
+* Unchanged on exit.
+*
+* LDA - INTEGER.
+* On entry, LDA specifies the first dimension of A as declared
+* in the calling (sub) program. When SIDE = 'L' or 'l' then
+* LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
+* then LDA must be at least max( 1, n ).
+* Unchanged on exit.
+*
+* B - COMPLEX*16 array of DIMENSION ( LDB, n ).
+* Before entry, the leading m by n part of the array B must
+* contain the right-hand side matrix B, and on exit is
+* overwritten by the solution matrix X.
+*
+* LDB - INTEGER.
+* On entry, LDB specifies the first dimension of B as declared
+* in the calling (sub) program. LDB must be at least
+* max( 1, m ).
+* Unchanged on exit.
+*
+*
+* Level 3 Blas routine.
+*
+* -- Written on 8-February-1989.
+* Jack Dongarra, Argonne National Laboratory.
+* Iain Duff, AERE Harwell.
+* Jeremy Du Croz, Numerical Algorithms Group Ltd.
+* Sven Hammarling, Numerical Algorithms Group Ltd.
+*
+*
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* .. External Subroutines ..
+ EXTERNAL XERBLA
+* .. Intrinsic Functions ..
+ INTRINSIC DCONJG, MAX
+* .. Local Scalars ..
+ LOGICAL LSIDE, NOCONJ, NOUNIT, UPPER
+ INTEGER I, INFO, J, K, NROWA
+ COMPLEX*16 TEMP
+* .. Parameters ..
+ COMPLEX*16 ONE
+ PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
+ COMPLEX*16 ZERO
+ PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ LSIDE = LSAME( SIDE , 'L' )
+ IF( LSIDE )THEN
+ NROWA = M
+ ELSE
+ NROWA = N
+ END IF
+ NOCONJ = LSAME( TRANSA, 'T' )
+ NOUNIT = LSAME( DIAG , 'N' )
+ UPPER = LSAME( UPLO , 'U' )
+*
+ INFO = 0
+ IF( ( .NOT.LSIDE ).AND.
+ $ ( .NOT.LSAME( SIDE , 'R' ) ) )THEN
+ INFO = 1
+ ELSE IF( ( .NOT.UPPER ).AND.
+ $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN
+ INFO = 2
+ ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND.
+ $ ( .NOT.LSAME( TRANSA, 'T' ) ).AND.
+ $ ( .NOT.LSAME( TRANSA, 'C' ) ) )THEN
+ INFO = 3
+ ELSE IF( ( .NOT.LSAME( DIAG , 'U' ) ).AND.
+ $ ( .NOT.LSAME( DIAG , 'N' ) ) )THEN
+ INFO = 4
+ ELSE IF( M .LT.0 )THEN
+ INFO = 5
+ ELSE IF( N .LT.0 )THEN
+ INFO = 6
+ ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
+ INFO = 9
+ ELSE IF( LDB.LT.MAX( 1, M ) )THEN
+ INFO = 11
+ END IF
+ IF( INFO.NE.0 )THEN
+ CALL XERBLA( 'ZTRSM ', INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible.
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+* And when alpha.eq.zero.
+*
+ IF( ALPHA.EQ.ZERO )THEN
+ DO 20, J = 1, N
+ DO 10, I = 1, M
+ B( I, J ) = ZERO
+ 10 CONTINUE
+ 20 CONTINUE
+ RETURN
+ END IF
+*
+* Start the operations.
+*
+ IF( LSIDE )THEN
+ IF( LSAME( TRANSA, 'N' ) )THEN
+*
+* Form B := alpha*inv( A )*B.
+*
+ IF( UPPER )THEN
+ DO 60, J = 1, N
+ IF( ALPHA.NE.ONE )THEN
+ DO 30, I = 1, M
+ B( I, J ) = ALPHA*B( I, J )
+ 30 CONTINUE
+ END IF
+ DO 50, K = M, 1, -1
+ IF( B( K, J ).NE.ZERO )THEN
+ IF( NOUNIT )
+ $ B( K, J ) = B( K, J )/A( K, K )
+ DO 40, I = 1, K - 1
+ B( I, J ) = B( I, J ) - B( K, J )*A( I, K )
+ 40 CONTINUE
+ END IF
+ 50 CONTINUE
+ 60 CONTINUE
+ ELSE
+ DO 100, J = 1, N
+ IF( ALPHA.NE.ONE )THEN
+ DO 70, I = 1, M
+ B( I, J ) = ALPHA*B( I, J )
+ 70 CONTINUE
+ END IF
+ DO 90 K = 1, M
+ IF( B( K, J ).NE.ZERO )THEN
+ IF( NOUNIT )
+ $ B( K, J ) = B( K, J )/A( K, K )
+ DO 80, I = K + 1, M
+ B( I, J ) = B( I, J ) - B( K, J )*A( I, K )
+ 80 CONTINUE
+ END IF
+ 90 CONTINUE
+ 100 CONTINUE
+ END IF
+ ELSE
+*
+* Form B := alpha*inv( A' )*B
+* or B := alpha*inv( conjg( A' ) )*B.
+*
+ IF( UPPER )THEN
+ DO 140, J = 1, N
+ DO 130, I = 1, M
+ TEMP = ALPHA*B( I, J )
+ IF( NOCONJ )THEN
+ DO 110, K = 1, I - 1
+ TEMP = TEMP - A( K, I )*B( K, J )
+ 110 CONTINUE
+ IF( NOUNIT )
+ $ TEMP = TEMP/A( I, I )
+ ELSE
+ DO 120, K = 1, I - 1
+ TEMP = TEMP - DCONJG( A( K, I ) )*B( K, J )
+ 120 CONTINUE
+ IF( NOUNIT )
+ $ TEMP = TEMP/DCONJG( A( I, I ) )
+ END IF
+ B( I, J ) = TEMP
+ 130 CONTINUE
+ 140 CONTINUE
+ ELSE
+ DO 180, J = 1, N
+ DO 170, I = M, 1, -1
+ TEMP = ALPHA*B( I, J )
+ IF( NOCONJ )THEN
+ DO 150, K = I + 1, M
+ TEMP = TEMP - A( K, I )*B( K, J )
+ 150 CONTINUE
+ IF( NOUNIT )
+ $ TEMP = TEMP/A( I, I )
+ ELSE
+ DO 160, K = I + 1, M
+ TEMP = TEMP - DCONJG( A( K, I ) )*B( K, J )
+ 160 CONTINUE
+ IF( NOUNIT )
+ $ TEMP = TEMP/DCONJG( A( I, I ) )
+ END IF
+ B( I, J ) = TEMP
+ 170 CONTINUE
+ 180 CONTINUE
+ END IF
+ END IF
+ ELSE
+ IF( LSAME( TRANSA, 'N' ) )THEN
+*
+* Form B := alpha*B*inv( A ).
+*
+ IF( UPPER )THEN
+ DO 230, J = 1, N
+ IF( ALPHA.NE.ONE )THEN
+ DO 190, I = 1, M
+ B( I, J ) = ALPHA*B( I, J )
+ 190 CONTINUE
+ END IF
+ DO 210, K = 1, J - 1
+ IF( A( K, J ).NE.ZERO )THEN
+ DO 200, I = 1, M
+ B( I, J ) = B( I, J ) - A( K, J )*B( I, K )
+ 200 CONTINUE
+ END IF
+ 210 CONTINUE
+ IF( NOUNIT )THEN
+ TEMP = ONE/A( J, J )
+ DO 220, I = 1, M
+ B( I, J ) = TEMP*B( I, J )
+ 220 CONTINUE
+ END IF
+ 230 CONTINUE
+ ELSE
+ DO 280, J = N, 1, -1
+ IF( ALPHA.NE.ONE )THEN
+ DO 240, I = 1, M
+ B( I, J ) = ALPHA*B( I, J )
+ 240 CONTINUE
+ END IF
+ DO 260, K = J + 1, N
+ IF( A( K, J ).NE.ZERO )THEN
+ DO 250, I = 1, M
+ B( I, J ) = B( I, J ) - A( K, J )*B( I, K )
+ 250 CONTINUE
+ END IF
+ 260 CONTINUE
+ IF( NOUNIT )THEN
+ TEMP = ONE/A( J, J )
+ DO 270, I = 1, M
+ B( I, J ) = TEMP*B( I, J )
+ 270 CONTINUE
+ END IF
+ 280 CONTINUE
+ END IF
+ ELSE
+*
+* Form B := alpha*B*inv( A' )
+* or B := alpha*B*inv( conjg( A' ) ).
+*
+ IF( UPPER )THEN
+ DO 330, K = N, 1, -1
+ IF( NOUNIT )THEN
+ IF( NOCONJ )THEN
+ TEMP = ONE/A( K, K )
+ ELSE
+ TEMP = ONE/DCONJG( A( K, K ) )
+ END IF
+ DO 290, I = 1, M
+ B( I, K ) = TEMP*B( I, K )
+ 290 CONTINUE
+ END IF
+ DO 310, J = 1, K - 1
+ IF( A( J, K ).NE.ZERO )THEN
+ IF( NOCONJ )THEN
+ TEMP = A( J, K )
+ ELSE
+ TEMP = DCONJG( A( J, K ) )
+ END IF
+ DO 300, I = 1, M
+ B( I, J ) = B( I, J ) - TEMP*B( I, K )
+ 300 CONTINUE
+ END IF
+ 310 CONTINUE
+ IF( ALPHA.NE.ONE )THEN
+ DO 320, I = 1, M
+ B( I, K ) = ALPHA*B( I, K )
+ 320 CONTINUE
+ END IF
+ 330 CONTINUE
+ ELSE
+ DO 380, K = 1, N
+ IF( NOUNIT )THEN
+ IF( NOCONJ )THEN
+ TEMP = ONE/A( K, K )
+ ELSE
+ TEMP = ONE/DCONJG( A( K, K ) )
+ END IF
+ DO 340, I = 1, M
+ B( I, K ) = TEMP*B( I, K )
+ 340 CONTINUE
+ END IF
+ DO 360, J = K + 1, N
+ IF( A( J, K ).NE.ZERO )THEN
+ IF( NOCONJ )THEN
+ TEMP = A( J, K )
+ ELSE
+ TEMP = DCONJG( A( J, K ) )
+ END IF
+ DO 350, I = 1, M
+ B( I, J ) = B( I, J ) - TEMP*B( I, K )
+ 350 CONTINUE
+ END IF
+ 360 CONTINUE
+ IF( ALPHA.NE.ONE )THEN
+ DO 370, I = 1, M
+ B( I, K ) = ALPHA*B( I, K )
+ 370 CONTINUE
+ END IF
+ 380 CONTINUE
+ END IF
+ END IF
+ END IF
+*
+ RETURN
+*
+* End of ZTRSM .
+*
+ END