diff options
author | Siddhesh Wani | 2015-05-25 14:46:31 +0530 |
---|---|---|
committer | Siddhesh Wani | 2015-05-25 14:46:31 +0530 |
commit | 6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26 (patch) | |
tree | 1b7bd89fdcfd01715713d8a15db471dc75a96bbf /2.3-1/src/fortran/blas/ztpsv.f | |
download | Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.gz Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.bz2 Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.zip |
Original Version
Diffstat (limited to '2.3-1/src/fortran/blas/ztpsv.f')
-rw-r--r-- | 2.3-1/src/fortran/blas/ztpsv.f | 341 |
1 files changed, 341 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/blas/ztpsv.f b/2.3-1/src/fortran/blas/ztpsv.f new file mode 100644 index 00000000..8649f474 --- /dev/null +++ b/2.3-1/src/fortran/blas/ztpsv.f @@ -0,0 +1,341 @@ + SUBROUTINE ZTPSV ( UPLO, TRANS, DIAG, N, AP, X, INCX ) +* .. Scalar Arguments .. + INTEGER INCX, N + CHARACTER*1 DIAG, TRANS, UPLO +* .. Array Arguments .. + COMPLEX*16 AP( * ), X( * ) +* .. +* +* Purpose +* ======= +* +* ZTPSV solves one of the systems of equations +* +* A*x = b, or A'*x = b, or conjg( A' )*x = b, +* +* where b and x are n element vectors and A is an n by n unit, or +* non-unit, upper or lower triangular matrix, supplied in packed form. +* +* No test for singularity or near-singularity is included in this +* routine. Such tests must be performed before calling this routine. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the matrix is an upper or +* lower triangular matrix as follows: +* +* UPLO = 'U' or 'u' A is an upper triangular matrix. +* +* UPLO = 'L' or 'l' A is a lower triangular matrix. +* +* Unchanged on exit. +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the equations to be solved as +* follows: +* +* TRANS = 'N' or 'n' A*x = b. +* +* TRANS = 'T' or 't' A'*x = b. +* +* TRANS = 'C' or 'c' conjg( A' )*x = b. +* +* Unchanged on exit. +* +* DIAG - CHARACTER*1. +* On entry, DIAG specifies whether or not A is unit +* triangular as follows: +* +* DIAG = 'U' or 'u' A is assumed to be unit triangular. +* +* DIAG = 'N' or 'n' A is not assumed to be unit +* triangular. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* AP - COMPLEX*16 array of DIMENSION at least +* ( ( n*( n + 1 ) )/2 ). +* Before entry with UPLO = 'U' or 'u', the array AP must +* contain the upper triangular matrix packed sequentially, +* column by column, so that AP( 1 ) contains a( 1, 1 ), +* AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) +* respectively, and so on. +* Before entry with UPLO = 'L' or 'l', the array AP must +* contain the lower triangular matrix packed sequentially, +* column by column, so that AP( 1 ) contains a( 1, 1 ), +* AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) +* respectively, and so on. +* Note that when DIAG = 'U' or 'u', the diagonal elements of +* A are not referenced, but are assumed to be unity. +* Unchanged on exit. +* +* X - COMPLEX*16 array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element right-hand side vector b. On exit, X is overwritten +* with the solution vector x. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. Local Scalars .. + COMPLEX*16 TEMP + INTEGER I, INFO, IX, J, JX, K, KK, KX + LOGICAL NOCONJ, NOUNIT +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC DCONJG +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO , 'U' ).AND. + $ .NOT.LSAME( UPLO , 'L' ) )THEN + INFO = 1 + ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. + $ .NOT.LSAME( TRANS, 'T' ).AND. + $ .NOT.LSAME( TRANS, 'C' ) )THEN + INFO = 2 + ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. + $ .NOT.LSAME( DIAG , 'N' ) )THEN + INFO = 3 + ELSE IF( N.LT.0 )THEN + INFO = 4 + ELSE IF( INCX.EQ.0 )THEN + INFO = 7 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'ZTPSV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( N.EQ.0 ) + $ RETURN +* + NOCONJ = LSAME( TRANS, 'T' ) + NOUNIT = LSAME( DIAG , 'N' ) +* +* Set up the start point in X if the increment is not unity. This +* will be ( N - 1 )*INCX too small for descending loops. +* + IF( INCX.LE.0 )THEN + KX = 1 - ( N - 1 )*INCX + ELSE IF( INCX.NE.1 )THEN + KX = 1 + END IF +* +* Start the operations. In this version the elements of AP are +* accessed sequentially with one pass through AP. +* + IF( LSAME( TRANS, 'N' ) )THEN +* +* Form x := inv( A )*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + KK = ( N*( N + 1 ) )/2 + IF( INCX.EQ.1 )THEN + DO 20, J = N, 1, -1 + IF( X( J ).NE.ZERO )THEN + IF( NOUNIT ) + $ X( J ) = X( J )/AP( KK ) + TEMP = X( J ) + K = KK - 1 + DO 10, I = J - 1, 1, -1 + X( I ) = X( I ) - TEMP*AP( K ) + K = K - 1 + 10 CONTINUE + END IF + KK = KK - J + 20 CONTINUE + ELSE + JX = KX + ( N - 1 )*INCX + DO 40, J = N, 1, -1 + IF( X( JX ).NE.ZERO )THEN + IF( NOUNIT ) + $ X( JX ) = X( JX )/AP( KK ) + TEMP = X( JX ) + IX = JX + DO 30, K = KK - 1, KK - J + 1, -1 + IX = IX - INCX + X( IX ) = X( IX ) - TEMP*AP( K ) + 30 CONTINUE + END IF + JX = JX - INCX + KK = KK - J + 40 CONTINUE + END IF + ELSE + KK = 1 + IF( INCX.EQ.1 )THEN + DO 60, J = 1, N + IF( X( J ).NE.ZERO )THEN + IF( NOUNIT ) + $ X( J ) = X( J )/AP( KK ) + TEMP = X( J ) + K = KK + 1 + DO 50, I = J + 1, N + X( I ) = X( I ) - TEMP*AP( K ) + K = K + 1 + 50 CONTINUE + END IF + KK = KK + ( N - J + 1 ) + 60 CONTINUE + ELSE + JX = KX + DO 80, J = 1, N + IF( X( JX ).NE.ZERO )THEN + IF( NOUNIT ) + $ X( JX ) = X( JX )/AP( KK ) + TEMP = X( JX ) + IX = JX + DO 70, K = KK + 1, KK + N - J + IX = IX + INCX + X( IX ) = X( IX ) - TEMP*AP( K ) + 70 CONTINUE + END IF + JX = JX + INCX + KK = KK + ( N - J + 1 ) + 80 CONTINUE + END IF + END IF + ELSE +* +* Form x := inv( A' )*x or x := inv( conjg( A' ) )*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + KK = 1 + IF( INCX.EQ.1 )THEN + DO 110, J = 1, N + TEMP = X( J ) + K = KK + IF( NOCONJ )THEN + DO 90, I = 1, J - 1 + TEMP = TEMP - AP( K )*X( I ) + K = K + 1 + 90 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/AP( KK + J - 1 ) + ELSE + DO 100, I = 1, J - 1 + TEMP = TEMP - DCONJG( AP( K ) )*X( I ) + K = K + 1 + 100 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/DCONJG( AP( KK + J - 1 ) ) + END IF + X( J ) = TEMP + KK = KK + J + 110 CONTINUE + ELSE + JX = KX + DO 140, J = 1, N + TEMP = X( JX ) + IX = KX + IF( NOCONJ )THEN + DO 120, K = KK, KK + J - 2 + TEMP = TEMP - AP( K )*X( IX ) + IX = IX + INCX + 120 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/AP( KK + J - 1 ) + ELSE + DO 130, K = KK, KK + J - 2 + TEMP = TEMP - DCONJG( AP( K ) )*X( IX ) + IX = IX + INCX + 130 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/DCONJG( AP( KK + J - 1 ) ) + END IF + X( JX ) = TEMP + JX = JX + INCX + KK = KK + J + 140 CONTINUE + END IF + ELSE + KK = ( N*( N + 1 ) )/2 + IF( INCX.EQ.1 )THEN + DO 170, J = N, 1, -1 + TEMP = X( J ) + K = KK + IF( NOCONJ )THEN + DO 150, I = N, J + 1, -1 + TEMP = TEMP - AP( K )*X( I ) + K = K - 1 + 150 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/AP( KK - N + J ) + ELSE + DO 160, I = N, J + 1, -1 + TEMP = TEMP - DCONJG( AP( K ) )*X( I ) + K = K - 1 + 160 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/DCONJG( AP( KK - N + J ) ) + END IF + X( J ) = TEMP + KK = KK - ( N - J + 1 ) + 170 CONTINUE + ELSE + KX = KX + ( N - 1 )*INCX + JX = KX + DO 200, J = N, 1, -1 + TEMP = X( JX ) + IX = KX + IF( NOCONJ )THEN + DO 180, K = KK, KK - ( N - ( J + 1 ) ), -1 + TEMP = TEMP - AP( K )*X( IX ) + IX = IX - INCX + 180 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/AP( KK - N + J ) + ELSE + DO 190, K = KK, KK - ( N - ( J + 1 ) ), -1 + TEMP = TEMP - DCONJG( AP( K ) )*X( IX ) + IX = IX - INCX + 190 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/DCONJG( AP( KK - N + J ) ) + END IF + X( JX ) = TEMP + JX = JX - INCX + KK = KK - ( N - J + 1 ) + 200 CONTINUE + END IF + END IF + END IF +* + RETURN +* +* End of ZTPSV . +* + END |