diff options
author | Siddhesh Wani | 2015-05-25 14:46:31 +0530 |
---|---|---|
committer | Siddhesh Wani | 2015-05-25 14:46:31 +0530 |
commit | 6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26 (patch) | |
tree | 1b7bd89fdcfd01715713d8a15db471dc75a96bbf /2.3-1/src/fortran/blas/dtbsv.f | |
download | Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.gz Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.bz2 Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.zip |
Original Version
Diffstat (limited to '2.3-1/src/fortran/blas/dtbsv.f')
-rw-r--r-- | 2.3-1/src/fortran/blas/dtbsv.f | 346 |
1 files changed, 346 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/blas/dtbsv.f b/2.3-1/src/fortran/blas/dtbsv.f new file mode 100644 index 00000000..d87ed82d --- /dev/null +++ b/2.3-1/src/fortran/blas/dtbsv.f @@ -0,0 +1,346 @@ + SUBROUTINE DTBSV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX ) +* .. Scalar Arguments .. + INTEGER INCX, K, LDA, N + CHARACTER*1 DIAG, TRANS, UPLO +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), X( * ) +* .. +* +* Purpose +* ======= +* +* DTBSV solves one of the systems of equations +* +* A*x = b, or A'*x = b, +* +* where b and x are n element vectors and A is an n by n unit, or +* non-unit, upper or lower triangular band matrix, with ( k + 1 ) +* diagonals. +* +* No test for singularity or near-singularity is included in this +* routine. Such tests must be performed before calling this routine. +* +* Parameters +* ========== +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the matrix is an upper or +* lower triangular matrix as follows: +* +* UPLO = 'U' or 'u' A is an upper triangular matrix. +* +* UPLO = 'L' or 'l' A is a lower triangular matrix. +* +* Unchanged on exit. +* +* TRANS - CHARACTER*1. +* On entry, TRANS specifies the equations to be solved as +* follows: +* +* TRANS = 'N' or 'n' A*x = b. +* +* TRANS = 'T' or 't' A'*x = b. +* +* TRANS = 'C' or 'c' A'*x = b. +* +* Unchanged on exit. +* +* DIAG - CHARACTER*1. +* On entry, DIAG specifies whether or not A is unit +* triangular as follows: +* +* DIAG = 'U' or 'u' A is assumed to be unit triangular. +* +* DIAG = 'N' or 'n' A is not assumed to be unit +* triangular. +* +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* K - INTEGER. +* On entry with UPLO = 'U' or 'u', K specifies the number of +* super-diagonals of the matrix A. +* On entry with UPLO = 'L' or 'l', K specifies the number of +* sub-diagonals of the matrix A. +* K must satisfy 0 .le. K. +* Unchanged on exit. +* +* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). +* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) +* by n part of the array A must contain the upper triangular +* band part of the matrix of coefficients, supplied column by +* column, with the leading diagonal of the matrix in row +* ( k + 1 ) of the array, the first super-diagonal starting at +* position 2 in row k, and so on. The top left k by k triangle +* of the array A is not referenced. +* The following program segment will transfer an upper +* triangular band matrix from conventional full matrix storage +* to band storage: +* +* DO 20, J = 1, N +* M = K + 1 - J +* DO 10, I = MAX( 1, J - K ), J +* A( M + I, J ) = matrix( I, J ) +* 10 CONTINUE +* 20 CONTINUE +* +* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) +* by n part of the array A must contain the lower triangular +* band part of the matrix of coefficients, supplied column by +* column, with the leading diagonal of the matrix in row 1 of +* the array, the first sub-diagonal starting at position 1 in +* row 2, and so on. The bottom right k by k triangle of the +* array A is not referenced. +* The following program segment will transfer a lower +* triangular band matrix from conventional full matrix storage +* to band storage: +* +* DO 20, J = 1, N +* M = 1 - J +* DO 10, I = J, MIN( N, J + K ) +* A( M + I, J ) = matrix( I, J ) +* 10 CONTINUE +* 20 CONTINUE +* +* Note that when DIAG = 'U' or 'u' the elements of the array A +* corresponding to the diagonal elements of the matrix are not +* referenced, but are assumed to be unity. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* ( k + 1 ). +* Unchanged on exit. +* +* X - DOUBLE PRECISION array of dimension at least +* ( 1 + ( n - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the n +* element right-hand side vector b. On exit, X is overwritten +* with the solution vector x. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* +* .. Parameters .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D+0 ) +* .. Local Scalars .. + DOUBLE PRECISION TEMP + INTEGER I, INFO, IX, J, JX, KPLUS1, KX, L + LOGICAL NOUNIT +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. External Subroutines .. + EXTERNAL XERBLA +* .. Intrinsic Functions .. + INTRINSIC MAX, MIN +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF ( .NOT.LSAME( UPLO , 'U' ).AND. + $ .NOT.LSAME( UPLO , 'L' ) )THEN + INFO = 1 + ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. + $ .NOT.LSAME( TRANS, 'T' ).AND. + $ .NOT.LSAME( TRANS, 'C' ) )THEN + INFO = 2 + ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. + $ .NOT.LSAME( DIAG , 'N' ) )THEN + INFO = 3 + ELSE IF( N.LT.0 )THEN + INFO = 4 + ELSE IF( K.LT.0 )THEN + INFO = 5 + ELSE IF( LDA.LT.( K + 1 ) )THEN + INFO = 7 + ELSE IF( INCX.EQ.0 )THEN + INFO = 9 + END IF + IF( INFO.NE.0 )THEN + CALL XERBLA( 'DTBSV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( N.EQ.0 ) + $ RETURN +* + NOUNIT = LSAME( DIAG, 'N' ) +* +* Set up the start point in X if the increment is not unity. This +* will be ( N - 1 )*INCX too small for descending loops. +* + IF( INCX.LE.0 )THEN + KX = 1 - ( N - 1 )*INCX + ELSE IF( INCX.NE.1 )THEN + KX = 1 + END IF +* +* Start the operations. In this version the elements of A are +* accessed by sequentially with one pass through A. +* + IF( LSAME( TRANS, 'N' ) )THEN +* +* Form x := inv( A )*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + KPLUS1 = K + 1 + IF( INCX.EQ.1 )THEN + DO 20, J = N, 1, -1 + IF( X( J ).NE.ZERO )THEN + L = KPLUS1 - J + IF( NOUNIT ) + $ X( J ) = X( J )/A( KPLUS1, J ) + TEMP = X( J ) + DO 10, I = J - 1, MAX( 1, J - K ), -1 + X( I ) = X( I ) - TEMP*A( L + I, J ) + 10 CONTINUE + END IF + 20 CONTINUE + ELSE + KX = KX + ( N - 1 )*INCX + JX = KX + DO 40, J = N, 1, -1 + KX = KX - INCX + IF( X( JX ).NE.ZERO )THEN + IX = KX + L = KPLUS1 - J + IF( NOUNIT ) + $ X( JX ) = X( JX )/A( KPLUS1, J ) + TEMP = X( JX ) + DO 30, I = J - 1, MAX( 1, J - K ), -1 + X( IX ) = X( IX ) - TEMP*A( L + I, J ) + IX = IX - INCX + 30 CONTINUE + END IF + JX = JX - INCX + 40 CONTINUE + END IF + ELSE + IF( INCX.EQ.1 )THEN + DO 60, J = 1, N + IF( X( J ).NE.ZERO )THEN + L = 1 - J + IF( NOUNIT ) + $ X( J ) = X( J )/A( 1, J ) + TEMP = X( J ) + DO 50, I = J + 1, MIN( N, J + K ) + X( I ) = X( I ) - TEMP*A( L + I, J ) + 50 CONTINUE + END IF + 60 CONTINUE + ELSE + JX = KX + DO 80, J = 1, N + KX = KX + INCX + IF( X( JX ).NE.ZERO )THEN + IX = KX + L = 1 - J + IF( NOUNIT ) + $ X( JX ) = X( JX )/A( 1, J ) + TEMP = X( JX ) + DO 70, I = J + 1, MIN( N, J + K ) + X( IX ) = X( IX ) - TEMP*A( L + I, J ) + IX = IX + INCX + 70 CONTINUE + END IF + JX = JX + INCX + 80 CONTINUE + END IF + END IF + ELSE +* +* Form x := inv( A')*x. +* + IF( LSAME( UPLO, 'U' ) )THEN + KPLUS1 = K + 1 + IF( INCX.EQ.1 )THEN + DO 100, J = 1, N + TEMP = X( J ) + L = KPLUS1 - J + DO 90, I = MAX( 1, J - K ), J - 1 + TEMP = TEMP - A( L + I, J )*X( I ) + 90 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( KPLUS1, J ) + X( J ) = TEMP + 100 CONTINUE + ELSE + JX = KX + DO 120, J = 1, N + TEMP = X( JX ) + IX = KX + L = KPLUS1 - J + DO 110, I = MAX( 1, J - K ), J - 1 + TEMP = TEMP - A( L + I, J )*X( IX ) + IX = IX + INCX + 110 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( KPLUS1, J ) + X( JX ) = TEMP + JX = JX + INCX + IF( J.GT.K ) + $ KX = KX + INCX + 120 CONTINUE + END IF + ELSE + IF( INCX.EQ.1 )THEN + DO 140, J = N, 1, -1 + TEMP = X( J ) + L = 1 - J + DO 130, I = MIN( N, J + K ), J + 1, -1 + TEMP = TEMP - A( L + I, J )*X( I ) + 130 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( 1, J ) + X( J ) = TEMP + 140 CONTINUE + ELSE + KX = KX + ( N - 1 )*INCX + JX = KX + DO 160, J = N, 1, -1 + TEMP = X( JX ) + IX = KX + L = 1 - J + DO 150, I = MIN( N, J + K ), J + 1, -1 + TEMP = TEMP - A( L + I, J )*X( IX ) + IX = IX - INCX + 150 CONTINUE + IF( NOUNIT ) + $ TEMP = TEMP/A( 1, J ) + X( JX ) = TEMP + JX = JX - INCX + IF( ( N - J ).GE.K ) + $ KX = KX - INCX + 160 CONTINUE + END IF + END IF + END IF +* + RETURN +* +* End of DTBSV . +* + END |