diff options
author | Ankitr19 | 2017-07-04 15:33:41 +0530 |
---|---|---|
committer | Ankitr19 | 2017-07-04 15:33:41 +0530 |
commit | 46f9a6c3b848a549f5d92929fd6d1efb501e176a (patch) | |
tree | 0063bfdcb730f75e8cd4281d6f775791883c87d4 /2.3-1/src/c/linearAlgebra/svd/dsvda.c | |
parent | 5cfbe7196dd381f1e3f49f5673ce5c9291748364 (diff) | |
parent | c66867c874436fb37ef54c67b048885ce094e894 (diff) | |
download | Scilab2C-46f9a6c3b848a549f5d92929fd6d1efb501e176a.tar.gz Scilab2C-46f9a6c3b848a549f5d92929fd6d1efb501e176a.tar.bz2 Scilab2C-46f9a6c3b848a549f5d92929fd6d1efb501e176a.zip |
New functions added and rpi issues resolved
Diffstat (limited to '2.3-1/src/c/linearAlgebra/svd/dsvda.c')
-rw-r--r-- | 2.3-1/src/c/linearAlgebra/svd/dsvda.c | 126 |
1 files changed, 126 insertions, 0 deletions
diff --git a/2.3-1/src/c/linearAlgebra/svd/dsvda.c b/2.3-1/src/c/linearAlgebra/svd/dsvda.c new file mode 100644 index 00000000..e6af3008 --- /dev/null +++ b/2.3-1/src/c/linearAlgebra/svd/dsvda.c @@ -0,0 +1,126 @@ +/* Copyright (C) 2017 - IIT Bombay - FOSSEE + + This file must be used under the terms of the CeCILL. + This source file is licensed as described in the file COPYING, which + you should have received as part of this distribution. The terms + are also available at + http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt + Author: Sandeep Gupta + Organization: FOSSEE, IIT Bombay + Email: toolbox@scilab.in + + */ + +/*Funtion to find singular value decomposition of given matrix */ + +#include "lapack.h" +#include <stdio.h> +#include <stdlib.h> +#include "string.h" +#include <math.h> +#include "svd.h" +#include "matrixTranspose.h" + +int min(int a,int b); +int max(int a,int b); + +extern double dgesvd_(char*,char*,int*,int*,double*,int*,double*,double*,int*,\ + double*,int*,double *,int*,int*); + +/* DGESVD computes the singular value decomposition (SVD) of a real + M-by-N matrix A, optionally computing the left and/or right singular + vectors. The SVD is written + + A = U * SIGMA * transpose(V) */ + +void dsvda(double *in1,int row,int col,double in2,double nout,double *out1, \ + double *out2,double *out3){ + + char JOBU,JOBVT; + int j,k; + int LDU=1; /*Leading Dimension of U */ + int LDVT=1; /*Leading Dimension of VT */ + int M = row; + int N = col; + double *buf; + double *S,*U,*VT; + double *WORK; + + if((nout > 1 && in2 == 1) && (M != N)){ /* [U,S,VT] = svd(x,'e') */ + if(M > N){ + JOBU = 'S'; + JOBVT = 'A'; + LDVT = N; + } + else{ + JOBU = 'A'; + JOBVT = 'S'; + LDVT = min(M,N); + } + LDU = M; + U = (double*) malloc((double) (LDU)*min(M,N)*sizeof(double)); + VT = (double*) malloc((double) (LDVT)*N*sizeof(double)); + } + else if(nout > 1){ /* [U,S,VT = svd(x)] */ + JOBU = 'A'; /*If JOBU = 'A', U contains the M-by-M orthogonal matrix U */ + JOBVT = 'A'; /*JOBVT = 'A': all N rows of V**T are returned in the array VT;*/ + LDU = M; + LDVT = N; + U = (double*) malloc((double) M*M*sizeof(double)); + VT = (double*) malloc((double) N*N*sizeof(double)); + } + else{ /* ans = svd(x) */ + JOBU = 'N'; + JOBVT = 'N'; + } + int LDA = max(1,M); + + /* Making a copy of input matrix */ + buf = (double*) malloc((double)M*N*sizeof(double)); + memcpy(buf,in1,M*N*sizeof(double)); + + S = (double*)malloc((double)min(col,row)*sizeof(double)); + + int LWORK = 5*min(M,N); + WORK = (double*)malloc((double)LWORK*sizeof(double)); + int INFO = 0; /*For successful exit */ + + dgesvd_(&JOBU,&JOBVT,&M,&N,buf,&LDA,S,U,&LDU,VT,&LDVT,WORK,&LWORK,&INFO); + /*Subroutine DGESVD from Lapack lib. */ + + if (nout == 1){ /* ans = svd(x)*/ + memcpy(out1,S,min(row,col)*sizeof(double)); + //printf("%lf %lf %lf",*(S),*(S+1),*(S+2)); + } /* [U,S,VT] = svd(x) */ + else if(in2 == 0 && nout > 1){ + memcpy(out1,U,LDU*M*sizeof(double)); + //memcpy(out3,VT,LDVT*min(row,col)*sizeof(double)); + for(j=0;j<M;j++){ + for(k=0;k<N;k++){ + if(j == k) *((out2+j*(min(M,N)))+k) = *(S+j); + else *((out2+j*(min(M,N)))+k) = 0; + } + } + dtransposea(VT,LDVT,N,out3); + } + else{ + memcpy(out1,U,LDU*min(row,col)*sizeof(double)); + for(j=0;j<min(M,N);j++){ + for(k=0;k<min(M,N);k++){ + if(j == k) *((out2+j*(min(M,N)))+k) = *(S+j); + else *((out2+j*(min(M,N)))+k) = 0; + } + } + dtransposea(VT,LDVT,N,out3); + } +} + +int min(int a,int b){ + if(a > b) return b; + return a; +} + +int max(int a,int b){ + if(a > b) return a; + return b; +} |