blob: 32b4096b45b0c6196a958254eccc22820a850f2b (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
31#Finite Element Method#31.3#Temperature of a heated plate#31_3.sce#964/CH31/EX31.3/31_3.sce#S##39603
31#Finite Element Method#31.2#Element Equation for Heated Rod#31_2.sce#964/CH31/EX31.2/31_2.sce#S##39560
31#Finite Element Method#31.1#Analytical Solution for Heated Rod#31_1.sce#964/CH31/EX31.1/31_1.sce#S##42676
31#Finite Element Method#31.1#Analytical Solution for Heated Rod#31_1.jpeg#964/CH31/EX31.1/31_1.jpeg#R##42677
30#Finite Difference Parabolic Equations#30.5#ADI Method#30_5.sce#964/CH30/EX30.5/30_5.sce#S##39508
30#Finite Difference Parabolic Equations#30.4#Comparison of Analytical and Numerical solution#30_4.sce#964/CH30/EX30.4/30_4.sce#S##39507
30#Finite Difference Parabolic Equations#30.3#Crank Nicolson solution to the heat conduction equation#30_3.sce#964/CH30/EX30.3/30_3.sce#S##39506
30#Finite Difference Parabolic Equations#30.2#Simple implicit solution of a heat conduction equation#30_2.sce#964/CH30/EX30.2/30_2.sce#S##39505
30#Finite Difference Parabolic Equations#30.1#Explicit solution of a one dimensional heat conduction equation#30_1.sce#964/CH30/EX30.1/30_1.sce#S##39504
29#Finite Difference Elliptic Equations#29.4#Heated plate with an irregular boundary#29_4.sce#964/CH29/EX29.4/29_4.sce#S##39503
29#Finite Difference Elliptic Equations#29.3#Heated plate with a insulated edge#29_3.sce#964/CH29/EX29.3/29_3.sce#S##39502
29#Finite Difference Elliptic Equations#29.2#Flux distribution for a heated plate#29_2.sce#964/CH29/EX29.2/29_2.sce#S##39501
29#Finite Difference Elliptic Equations#29.1#Temperature of a heated plate with fixed boundary conditions#29_1.sce#964/CH29/EX29.1/29_1.sce#S##39604
27#Boundary Value and Eigen Value problems#27.9#Eigenvalues and ODEs#27_9.sce#964/CH27/EX27.9/27_9.sce#S##42669
27#Boundary Value and Eigen Value problems#27.9#Eigenvalues and ODEs#27_9_1.jpeg#964/CH27/EX27.9/27_9_1.jpeg#R##42670
27#Boundary Value and Eigen Value problems#27.9#Eigenvalues and ODEs#27_9_2.jpeg#964/CH27/EX27.9/27_9_2.jpeg#R##42671
27#Boundary Value and Eigen Value problems#27.8#Power Method Lowest Eigenvalue#27_8.sce#964/CH27/EX27.8/27_8.sce#S##39549
27#Boundary Value and Eigen Value problems#27.7#Power Method Highest Eigenvalue#27_7.sce#964/CH27/EX27.7/27_7.sce#S##39547
27#Boundary Value and Eigen Value problems#27.6#Polynomial Method#27_6.sce#964/CH27/EX27.6/27_6.sce#S##39546
27#Boundary Value and Eigen Value problems#27.5#Axially Loaded column#27_5.sce#964/CH27/EX27.5/27_5.sce#S##39545
27#Boundary Value and Eigen Value problems#27.4#Mass Spring System#27_4.sce#964/CH27/EX27.4/27_4.sce#S##39544
27#Boundary Value and Eigen Value problems#27.3#Finite Difference Approximation#27_3.sce#964/CH27/EX27.3/27_3.sce#S##39543
27#Boundary Value and Eigen Value problems#27.2#The shooting method for non linear problems#27_2.sce#964/CH27/EX27.2/27_2.sce#S##39510
27#Boundary Value and Eigen Value problems#27.2#The shooting method for non linear problems#27_2.jpeg#964/CH27/EX27.2/27_2.jpeg#R##39511
27#Boundary Value and Eigen Value problems#27.11#Solving ODEs#27_11.sce#964/CH27/EX27.11/27_11.sce#S##39557
27#Boundary Value and Eigen Value problems#27.10.b#Stiff ODEs#27_10_b.sce#964/CH27/EX27.10.b/27_10_b.sce#S##42674
27#Boundary Value and Eigen Value problems#27.10.b#Stiff ODEs#27_10_b.jpeg#964/CH27/EX27.10.b/27_10_b.jpeg#R##42675
27#Boundary Value and Eigen Value problems#27.10.a#Stiff ODEs#27_10_a.sce#964/CH27/EX27.10.a/27_10_a.sce#S##42672
27#Boundary Value and Eigen Value problems#27.10.a#Stiff ODEs#27_10_a.jpeg#964/CH27/EX27.10.a/27_10_a.jpeg#R##42673
27#Boundary Value and Eigen Value problems#27.1#The shooting method#27_1.sce#964/CH27/EX27.1/27_1.sce#S##39509
26#Stiffness and multistep methods#26.7#stability of Milnes and Fourth order Adams method#26_7.sce#964/CH26/EX26.7/26_7.sce#S##39499
26#Stiffness and multistep methods#26.6#Fourth order Adams method#26_6.sce#964/CH26/EX26.6/26_6.sce#S##39498
26#Stiffness and multistep methods#26.5#Milnes Method#26_5.sce#964/CH26/EX26.5/26_5.sce#S##39497
26#Stiffness and multistep methods#26.4#Effect of modifier on Predictor Corrector results#26_4.sce#964/CH26/EX26.4/26_4.sce#S##39496
26#Stiffness and multistep methods#26.3#Estimate of per step truncation error#26_3.sce#964/CH26/EX26.3/26_3.sce#S##39495
26#Stiffness and multistep methods#26.2#Non self starting Heun method#26_2.sce#964/CH26/EX26.2/26_2.sce#S##39494
26#Stiffness and multistep methods#26.1#Explicit and Implicit Euler#26_1.sce#964/CH26/EX26.1/26_1.sce#S##42666
26#Stiffness and multistep methods#26.1#Explicit and Implicit Euler#26_1_1.jpeg#964/CH26/EX26.1/26_1_1.jpeg#R##42667
26#Stiffness and multistep methods#26.1#Explicit and Implicit Euler#26_1_2.jpeg#964/CH26/EX26.1/26_1_2.jpeg#R##42668
25#Runga Kutta methods#25.9#Solving systems of ODE using Eulers method#25_9.sce#964/CH25/EX25.9/25_9.sce#S##39487
25#Runga Kutta methods#25.8#Comparison of Runga Kutta methods#25_8.sce#964/CH25/EX25.8/25_8.sce#S##39484
25#Runga Kutta methods#25.7#Classical fourth order RK method#25_7.sce#964/CH25/EX25.7/25_7.sce#S##39480
25#Runga Kutta methods#25.6#Comparison of various second order RK 4 method#25_6.sce#964/CH25/EX25.6/25_6.sce#S##39473
25#Runga Kutta methods#25.5#Heuns method#25_5.sce#964/CH25/EX25.5/25_5.sce#S##39472
25#Runga Kutta methods#25.4#Solving ODEs#25_4.sce#964/CH25/EX25.4/25_4.sce#S##42664
25#Runga Kutta methods#25.4#Solving ODEs#25_4.jpeg#964/CH25/EX25.4/25_4.jpeg#R##42665
25#Runga Kutta methods#25.3#Effect of reduced step size on Eulers method#25_3.sce#964/CH25/EX25.3/25_3.sce#S##39471
25#Runga Kutta methods#25.2#Taylor series estimate for error by eulers method#25_2.sce#964/CH25/EX25.2/25_2.sce#S##39470
25#Runga Kutta methods#25.14#Adaptive Fourth order RK scheme#25_14.sce#964/CH25/EX25.14/25_14.sce#S##39570
25#Runga Kutta methods#25.14#Adaptive Fourth order RK scheme#25_14.jpeg#964/CH25/EX25.14/25_14.jpeg#R##39571
25#Runga Kutta methods#25.13#Runga kutta fehlberg method#25_13.sce#964/CH25/EX25.13/25_13.sce#S##39493
25#Runga Kutta methods#25.12#Adaptive fourth order RK method#25_12.sce#964/CH25/EX25.12/25_12.sce#S##39492
25#Runga Kutta methods#25.11#Solving systems of ODEs#25_11.sce#964/CH25/EX25.11/25_11.sce#S##39567
25#Runga Kutta methods#25.11#Solving systems of ODEs#25_11_1.jpeg#964/CH25/EX25.11/25_11_1.jpeg#R##39568
25#Runga Kutta methods#25.11#Solving systems of ODEs#25_11_2.jpeg#964/CH25/EX25.11/25_11_2.jpeg#R##39569
25#Runga Kutta methods#25.10#Solving systems of ODE using RK 4 method#25_10.sce#964/CH25/EX25.10/25_10.sce#S##39491
25#Runga Kutta methods#25.1#Eulers method#25_1.sce#964/CH25/EX25.1/25_1.sce#S##39469
23#Numerical differentiation#23.5#Integrate a function#23_5.sce#964/CH23/EX23.5/23_5.sce#S##39564
23#Numerical differentiation#23.4#Integration and Differentiation#23_4.sce#964/CH23/EX23.4/23_4.sce#S##39563
23#Numerical differentiation#23.3#Differentiating unequally spaced data#23_3.sce#964/CH23/EX23.3/23_3.sce#S##39468
23#Numerical differentiation#23.2#Richardson extrapolation#23_2.sce#964/CH23/EX23.2/23_2.sce#S##39467
23#Numerical differentiation#23.1#High accuracy numerical differentiation formulas#23_1.sce#964/CH23/EX23.1/23_1.sce#S##39466
22#Integration of equations#22.6#Evaluation of improper integral#22_6.sce#964/CH22/EX22.6/22_6.sce#S##39465
22#Integration of equations#22.5#Applying Gauss Quadrature to the falling Parachutist problem#22_5.sce#964/CH22/EX22.5/22_5.sce#S##39464
22#Integration of equations#22.4#Three point gauss legendre method#22_4.sce#964/CH22/EX22.4/22_4.sce#S##39463
22#Integration of equations#22.3#Two point gauss legendre formulae#22_3.sce#964/CH22/EX22.3/22_3.sce#S##39462
22#Integration of equations#22.2#Higher order error correction of integral estimates#22_2.sce#964/CH22/EX22.2/22_2.sce#S##39461
22#Integration of equations#22.1#Error corrections of the trapezoidal rule#22_1.sce#964/CH22/EX22.1/22_1.sce#S##39460
21#Newton Cotes Integration Formulas#21.9#Average Temperature Determination#21_9.sce#964/CH21/EX21.9/21_9.sce#S##39542
21#Newton Cotes Integration Formulas#21.8#Simpsons Uneven data#21_8.sce#964/CH21/EX21.8/21_8.sce#S##39541
21#Newton Cotes Integration Formulas#21.7#Unequal Trapezoidal segments#21_7.sce#964/CH21/EX21.7/21_7.sce#S##39540
21#Newton Cotes Integration Formulas#21.6#Simpsons 3 by 8 rule#21_6.sce#964/CH21/EX21.6/21_6.sce#S##39539
21#Newton Cotes Integration Formulas#21.5#Multiple Simpsons 1 by 3 rule#21_5.sce#964/CH21/EX21.5/21_5.sce#S##39538
21#Newton Cotes Integration Formulas#21.4#Single Simpsons 1 by 3 rule#21_4.sce#964/CH21/EX21.4/21_4.sce#S##39537
21#Newton Cotes Integration Formulas#21.3#Evaluating Integrals#21_3.sce#964/CH21/EX21.3/21_3.sce#S##39536
21#Newton Cotes Integration Formulas#21.2#Multiple trapezoidal rule#21_2.sce#964/CH21/EX21.2/21_2.sce#S##39535
21#Newton Cotes Integration Formulas#21.1#Single trapezoidal rule#21_1.sce#964/CH21/EX21.1/21_1.sce#S##39534
19#Fourier Approximation#19.6#Polynomial Regression#19_6.sce#964/CH19/EX19.6/19_6.sce#S##39422
19#Fourier Approximation#19.5#Curve Fitting#19_5.sce#964/CH19/EX19.5/19_5.sce#S##42661
19#Fourier Approximation#19.5#Curve Fitting#19_5a.jpeg#964/CH19/EX19.5/19_5a.jpeg#R##42662
19#Fourier Approximation#19.5#Curve Fitting#19_5b.jpeg#964/CH19/EX19.5/19_5b.jpeg#R##42663
19#Fourier Approximation#19.4#Data Analysis#19_4.sce#964/CH19/EX19.4/19_4.sce#S##39405
19#Fourier Approximation#19.3#Trendline#19_3.sce#964/CH19/EX19.3/19_3.sce#S##39399
19#Fourier Approximation#19.3#Trendline#19_3.jpeg#964/CH19/EX19.3/19_3.jpeg#R##39400
19#Fourier Approximation#19.2#Continuous Fourier Series Approximation#19_2.sce#964/CH19/EX19.2/19_2.sce#S##39390
19#Fourier Approximation#19.1#Least Square Fit#19_1.sce#964/CH19/EX19.1/19_1.sce#S##39384
18#Interpolation#18.9#Quadratic splines#18_9.sce#964/CH18/EX18.9/18_9.sce#S##42680
18#Interpolation#18.9#Quadratic splines#18_9.jpeg#964/CH18/EX18.9/18_9.jpeg#R##42658
18#Interpolation#18.8#First order splines#18_8.sce#964/CH18/EX18.8/18_8.sce#S##42679
18#Interpolation#18.8#First order splines#18_8.jpeg#964/CH18/EX18.8/18_8.jpeg#R##42657
18#Interpolation#18.7#Lagrange interpolation using computer#18_7.sce#964/CH18/EX18.7/18_7.sce#S##39453
18#Interpolation#18.6#Lagrange interpolating polynomials#18_6.sce#964/CH18/EX18.6/18_6.sce#S##39452
18#Interpolation#18.5#Error Estimates for Order of Interpolation#18_5.sce#964/CH18/EX18.5/18_5.sce#S##39562
18#Interpolation#18.4#Error estimation for Newtons polynomial#18_4.sce#964/CH18/EX18.4/18_4.sce#S##39451
18#Interpolation#18.3#Newtons divided difference Interpolating polynomials#18_3.sce#964/CH18/EX18.3/18_3.sce#S##39450
18#Interpolation#18.2#Quadratic interpolation#18_2.sce#964/CH18/EX18.2/18_2.sce#S##39449
18#Interpolation#18.10#Cubic splines#18_10.sce#964/CH18/EX18.10/18_10.sce#S##42681
18#Interpolation#18.10#Cubic splines#18_10.jpeg#964/CH18/EX18.10/18_10.jpeg#R##42660
18#Interpolation#18.1#Linear interpolation#18_1.sce#964/CH18/EX18.1/18_1.sce#S##39448
17#Least squares regression#17.8#Gauss Newton method#17_8.sce#964/CH17/EX17.8/17_8.sce#S##39447
17#Least squares regression#17.7#Confidence interval for linear regression#17_7.sce#964/CH17/EX17.7/17_7.sce#S##39446
17#Least squares regression#17.6#Multiple linear regression#17_6.sce#964/CH17/EX17.6/17_6.sce#S##39445
17#Least squares regression#17.5#polynomial regression#17_5.sce#964/CH17/EX17.5/17_5.sce#S##39440
17#Least squares regression#17.5#polynomial regression#17_5.jpeg#964/CH17/EX17.5/17_5.jpeg#R##39441
17#Least squares regression#17.4#Linearization of a power function#17_4.sce#964/CH17/EX17.4/17_4.sce#S##39442
17#Least squares regression#17.4#Linearization of a power function#17_4_a.jpeg#964/CH17/EX17.4/17_4_a.jpeg#R##39443
17#Least squares regression#17.4#Linearization of a power function#17_4_b.jpeg#964/CH17/EX17.4/17_4_b.jpeg#R##39444
17#Least squares regression#17.3.b#linear regression using computer#17_3b.sce#964/CH17/EX17.3.b/17_3b.sce#S##39438
17#Least squares regression#17.3.b#linear regression using computer#17_3b.jpeg#964/CH17/EX17.3.b/17_3b.jpeg#R##39439
17#Least squares regression#17.3.a#linear regression using computer#17_3_a.sce#964/CH17/EX17.3.a/17_3_a.sce#S##39436
17#Least squares regression#17.3.a#linear regression using computer#17_3a.jpeg#964/CH17/EX17.3.a/17_3a.jpeg#R##39437
17#Least squares regression#17.2#Estimation of errors for the linear least square fit#17_2.sce#964/CH17/EX17.2/17_2.sce#S##39435
17#Least squares regression#17.1#Linear regression#17_1.sce#964/CH17/EX17.1/17_1.sce#S##39434
15#Constrained Optimization#15.7#Locate Single Optimum#15_7.sce#964/CH15/EX15.7/15_7.sce#S##39369
15#Constrained Optimization#15.6#Multidimensional Optimization#15_6.sce#964/CH15/EX15.6/15_6.sce#S##39365
15#Constrained Optimization#15.5#One dimensional Optimization#15_5.sce#964/CH15/EX15.5/15_5.sce#S##39358
15#Constrained Optimization#15.4#Nonlinear constrained optimization#15_4.sce#964/CH15/EX15.4/15_4.sce#S##39357
15#Constrained Optimization#15.3#Linear Programming Problem#15_3.sce#964/CH15/EX15.3/15_3.sce#S##39356
15#Constrained Optimization#15.2#Graphical Solution#15_2.sce#964/CH15/EX15.2/15_2.sce#S##42655
15#Constrained Optimization#15.2#Graphical Solution#15_2.jpeg#964/CH15/EX15.2/15_2.jpeg#R##42656
15#Constrained Optimization#15.1#Setting up LP problem#15_1.sce#964/CH15/EX15.1/15_1.sce#S##39302
14#Multidimensional Unconstrainted Optimization#14.4#Optimal Steepest Descent#14_4.sce#964/CH14/EX14.4/14_4.sce#S##39286
14#Multidimensional Unconstrainted Optimization#14.3#1 D function along Gradient#14_3.sce#964/CH14/EX14.3/14_3.sce#S##39285
14#Multidimensional Unconstrainted Optimization#14.2#Path of Steepest Descent#14_2.sce#964/CH14/EX14.2/14_2.sce#S##39284
14#Multidimensional Unconstrainted Optimization#14.1#Random Search Method#14_1.sce#964/CH14/EX14.1/14_1.sce#S##39283
13#One dimensional unconstrained optimization#13.3#Newtons method#13_3.sce#964/CH13/EX13.3/13_3.sce#S##39433
13#One dimensional unconstrained optimization#13.2#Quadratic interpolation#13_2.sce#964/CH13/EX13.2/13_2.sce#S##39432
13#One dimensional unconstrained optimization#13.1#Golden section method#13_1.sce#964/CH13/EX13.1/13_1.sce#S##39431
11#Special Matrices and gauss seidel#11.6#Analyze and solve Hilbert matrix#11_6.sce#964/CH11/EX11.6/11_6.sce#S##39423
11#Special Matrices and gauss seidel#11.5#Manipulate linear algebraic equations#11_5.sce#964/CH11/EX11.5/11_5.sce#S##39419
11#Special Matrices and gauss seidel#11.4#Linear systems#11_4.sce#964/CH11/EX11.4/11_4.sce#S##39413
11#Special Matrices and gauss seidel#11.3#Gauss Seidel method#11_3.sce#964/CH11/EX11.3/11_3.sce#S##39406
11#Special Matrices and gauss seidel#11.2#Cholesky Decomposition#11_2.sce#964/CH11/EX11.2/11_2.sce#S##39402
11#Special Matrices and gauss seidel#11.1#Tridiagonal solution with Thomas algorithm#11_1.sce#964/CH11/EX11.1/11_1.sce#S##39394
10#LU Decomposition and matrix inverse#10.4#Matrix condition evaluation#10_4.sce#964/CH10/EX10.4/10_4.sce#S##39389
10#LU Decomposition and matrix inverse#10.3#Matrix inversion#10_3.sce#964/CH10/EX10.3/10_3.sce#S##39385
10#LU Decomposition and matrix inverse#10.2#The substitution steps#10_2.sce#964/CH10/EX10.2/10_2.sce#S##39383
10#LU Decomposition and matrix inverse#10.1#LU decomposition with gauss elimination#10_1.sce#964/CH10/EX10.1/10_1.sce#S##39277
9#Gauss Elimination#9.9#Partial Pivoting#9_9.sce#964/CH9/EX9.9/9_9.sce#S##39594
9#Gauss Elimination#9.8#Scaling#9_8.sce#964/CH9/EX9.8/9_8.sce#S##39280
9#Gauss Elimination#9.7#Effect of Scale on Determinant#9_7.sce#964/CH9/EX9.7/9_7.sce#S##39279
9#Gauss Elimination#9.6#ill conditioned systems#9_6.sce#964/CH9/EX9.6/9_6.sce#S##39278
9#Gauss Elimination#9.5#Naive Gauss Elimination#9_5.sce#964/CH9/EX9.5/9_5.sce#S##39276
9#Gauss Elimination#9.4#Elimination of Unknowns#9_4.sce#964/CH9/EX9.4/9_4.sce#S##39275
9#Gauss Elimination#9.3#Cramers Rule#9_3.sce#964/CH9/EX9.3/9_3.sce#S##39274
9#Gauss Elimination#9.2#Deterinants#9_2.sce#964/CH9/EX9.2/9_2.sce#S##39273
9#Gauss Elimination#9.12#Gauss Jordan method#9_12.sce#964/CH9/EX9.12/9_12.sce#S##39596
9#Gauss Elimination#9.11#Solution of Linear Algebraic Equations#9_11.sce#964/CH9/EX9.11/9_11.sce#S##39282
9#Gauss Elimination#9.10#Effect of scaling on Pivoting and round off#9_10.sce#964/CH9/EX9.10/9_10.sce#S##39595
9#Gauss Elimination#9.1#Graphical Method for two Equations#9_1.sce#964/CH9/EX9.1/9_1.sce#S##39271
9#Gauss Elimination#9.1#Graphical Method for two Equations#9_1.jpeg#964/CH9/EX9.1/9_1.jpeg#R##39272
7#Roots of Polynomials#7.8#Root Location#7_8.sce#964/CH7/EX7.8/7_8.sce#S##39270
7#Roots of Polynomials#7.7#Roots of Polynomials#7_7.sce#964/CH7/EX7.7/7_7.sce#S##39269
7#Roots of Polynomials#7.6#Root Location#7_6.sce#964/CH7/EX7.6/7_6.sce#S##39268
7#Roots of Polynomials#7.5#Solving nonlinear system#7_5.sce#964/CH7/EX7.5/7_5.sce#S##39585
7#Roots of Polynomials#7.4#Locate single root#7_4.sce#964/CH7/EX7.4/7_4.sce#S##39267
7#Roots of Polynomials#7.3#Bairstows Method#7_3.sce#964/CH7/EX7.3/7_3.sce#S##39266
7#Roots of Polynomials#7.2#Mullers Method#7_2.sce#964/CH7/EX7.2/7_2.sce#S##39265
7#Roots of Polynomials#7.1#Polynomial Deflation#7_1.sce#964/CH7/EX7.1/7_1.sce#S##39264
6#Open Methods#6.9#modified newton raphson method#6_9.sce#964/CH6/EX6.9/6_9.sce#S##39262
6#Open Methods#6.8#Modified secant method#6_8.sce#964/CH6/EX6.8/6_8.sce#S##39261
6#Open Methods#6.7#secant and false position techniques#6_7.sce#964/CH6/EX6.7/6_7.sce#S##39260
6#Open Methods#6.6#The secant method#6_6.sce#964/CH6/EX6.6/6_6.sce#S##39259
6#Open Methods#6.5#slowly converging function with Newton Raphson method#6_5.sce#964/CH6/EX6.5/6_5.sce#S##39258
6#Open Methods#6.4#Error analysis of Newton Raphson method#6_4.sce#964/CH6/EX6.4/6_4.sce#S##39257
6#Open Methods#6.3#Newton Raphson Method#6_3.sce#964/CH6/EX6.3/6_3.sce#S##39256
6#Open Methods#6.2#The Two curve graphical method#6_2.sce#964/CH6/EX6.2/6_2.sce#S##42678
6#Open Methods#6.2#The Two curve graphical method#6_2.jpeg#964/CH6/EX6.2/6_2.jpeg#R##42659
6#Open Methods#6.11#Newton Raphson for a nonlinear Problem#6_11.sce#964/CH6/EX6.11/6_11.sce#S##39561
6#Open Methods#6.10#fixed point iteration for nonlinear system#6_10.sce#964/CH6/EX6.10/6_10.sce#S##39263
6#Open Methods#6.1#simple fixed point iteration#6_1.sce#964/CH6/EX6.1/6_1.sce#S##39253
5#Bracketing Methods#5.6#Bracketing and False Position Methods#5_6.sce#964/CH5/EX5.6/5_6.sce#S##39752
5#Bracketing Methods#5.5#False Position#5_5.sce#964/CH5/EX5.5/5_5.sce#S##39751
5#Bracketing Methods#5.4#Error Estimates for Bisection#5_4.sce#964/CH5/EX5.4/5_4.sce#S##39750
5#Bracketing Methods#5.3#Bisection#5_3.sce#964/CH5/EX5.3/5_3.sce#S##39749
5#Bracketing Methods#5.2#Computer Graphics to Locate Roots#5_2.sce#964/CH5/EX5.2/5_2.sce#S##39747
5#Bracketing Methods#5.2#Computer Graphics to Locate Roots#5_2.jpeg#964/CH5/EX5.2/5_2.jpeg#R##39748
5#Bracketing Methods#5.1#Graphical Approach#5_1.sce#964/CH5/EX5.1/5_1.sce#S##42653
5#Bracketing Methods#5.1#Graphical Approach#5_1.jpeg#964/CH5/EX5.1/5_1.jpeg#R##42654
4#Truncation Errors and the Taylor Series#4.7#Condition Number#4_7.sce#964/CH4/EX4.7/4_7.sce#S##39744
4#Truncation Errors and the Taylor Series#4.6#Error propagation in multivariable function#4_6.sce#964/CH4/EX4.6/4_6.sce#S##39743
4#Truncation Errors and the Taylor Series#4.5#Error propagation in function of single variable#4_5.sce#964/CH4/EX4.5/4_5.sce#S##39742
4#Truncation Errors and the Taylor Series#4.4#Finite divided difference approximation of derivatives#4_4.sce#964/CH4/EX4.4/4_4.sce#S##39741
4#Truncation Errors and the Taylor Series#4.3#Effect of Nonlinearity and Stepsize on Taylor expansion#4_3.sce#964/CH4/EX4.3/4_3.sce#S##39740
4#Truncation Errors and the Taylor Series#4.2#Taylor Series Expansion#4_2.sce#964/CH4/EX4.2/4_2.sce#S##36791
4#Truncation Errors and the Taylor Series#4.1#Polynomial Taylor Series#4_1.sce#964/CH4/EX4.1/4_1.sce#S##36790
3#Approximations and Round off Errors#3.8#Infinite Series Evaluation#3_8.sce#964/CH3/EX3.8/3_8.sce#S##36789
3#Approximations and Round off Errors#3.7#Subtractive Cancellation#3_7.sce#964/CH3/EX3.7/3_7.sce#S##36788
3#Approximations and Round off Errors#3.6#Interdependent Computations#3_6.sce#964/CH3/EX3.6/3_6.sce#S##36787
3#Approximations and Round off Errors#3.5#Machine Epsilon#3_5.sce#964/CH3/EX3.5/3_5.sce#S##36786
3#Approximations and Round off Errors#3.4#Floating Point Numbers#3_4.sce#964/CH3/EX3.4/3_4.sce#S##36785
3#Approximations and Round off Errors#3.3#Range of Integers#3_3.sce#964/CH3/EX3.3/3_3.sce#S##36784
3#Approximations and Round off Errors#3.2#Iterative error estimation#3_2.sce#964/CH3/EX3.2/3_2.sce#S##36783
3#Approximations and Round off Errors#3.1#Calculations of Errors#3_1.sce#964/CH3/EX3.1/3_1.sce#S##36782
2#Programming and Software#2.1#roots of quadratic#2_1.sce#964/CH2/EX2.1/2_1.sce#S##36781
1#Mathematical Modelling and Engineering Problem Solving#1.2#Numerical Solution to Falling Parachutist Problem#1_2.sce#964/CH1/EX1.2/1_2.sce#S##36780
1#Mathematical Modelling and Engineering Problem Solving#1.1#Analytical Solution to Falling Parachutist Problem#1_1.sce#964/CH1/EX1.1/1_1.sce#S##36779
|