1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
//Chapter 9
//Example 9_8
//Page 217
clear;clc;
r=0.75;
//According to the figure in the text book
dab=3;
dbc=3;
dacd=4;
dbbd=5.5;
dcad=4;
dca=dab+dbc;
gmr=r*0.7788;
Daa=gmr;
Dadad=gmr;
Dab=sqrt(dab^2+r^2);
Dabd=sqrt(dab^2+(dacd+r)^2);
Daad=sqrt((dab+dbc)^2+dacd^2);
Dada=Daad;
Ds1=(Daa*Daad*Dada*Dadad)^(1/4)/10;
Ds2=(Daa*dbbd*Daa*dbbd)^(1/4)/10;
Ds3=Ds1;
Ds=(Ds1*Ds2*Ds3)^(1/3);
DAB=(Dab*Dabd*Dabd*Dab)^(1/4);
DBC=DAB;
DCA=(dca*dacd*dacd*dca)^(1/4);
Dm=(DAB*DBC*DCA)^(1/3);
l_ph_m=1e-7*2*log(Dm/Ds);
printf("GMR of conductor = %.3f cm \n\n", gmr);
printf("Distance a to b = %.2f m \n", Dab);
printf("Distance a to b-dash = %.2f m \n", Dabd);
printf("Distance a to a-dash = %.2f m \n\n", Daad);
printf("Ds1 = %.3f m \n", Ds1);
printf("Ds2 = %.3f m \n", Ds2);
printf("Ds3 = %.3f m \n", Ds3);
printf("Equivalent self GMD of one phase = %.3f m \n\n", Ds);
printf("DAB = %.3f m \n", DAB);
printf("DBC = %.3f m \n", DBC);
printf("DCA = %.3f m \n", DCA);
printf("Equivalent mutual GMD = %.3f m \n\n", Dm);
printf("Inductance/phase/m = %.3f*10^-3 mH \n\n", l_ph_m/10*1e7);
printf("Inductance/phase/km = %.3f mH \n\n", l_ph_m/10*1e7);
|